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Abstract

In this project we will explore the kinetics of cell sorting and study if and how
modifications and extensions of the standard cellular Potts model will change it.
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Introduction

The cellular Potts model is a generalization of the Ising model in statistical me-
chanics used to study ferromagnetism [3]. The cellular Potts model was introduced
by Glazier and Graner [1] with which they could simulate the sorting of biological
cells and show a variety of emergent behavior of interacting cells. Grounded on the
differential adhesion hypothesis, they proposed an energy functional for the system
that is minimized as cells properly sort themselves. Subsequently, the model has
been extended accordingly to address several biological questions[4]. This report
is organized as follows. First, we introduce a modified Hamiltonian. Secondly, we
bring up some results of our simulations in line with the scope of the project. Lastly,
we conclude the report by touching upon some questions risen during the course of
the simulations and by providing a concise discussion hereof.

A relaxation of the Cellular Potts Model

There is, in fact, enough empirical evidence in the literature to support the claim
that cells of different categories have indeed an average size. This property has been
successfully explored in the context of the Cellular Potts Model [1, 4] to simulate
the motility of interacting cells and to predict the emergent behavior at the tissue
level. In fact, the model rests heavily upon the hypothesis that cells strive to achieve
a target area [2]. In this project, we have proposed a relaxation of this hypothesis.

The Hamiltonian

Under the Differential adhesion Hypothesis, we introduce the following Hamiltonian
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where JT(U@))J(U@I)) stands for the adhesion energy of the interacting cells; Z rep-
resent a lattice site which resembles the position of biological cells; o(Z) gives the
indices of identical cells; M(g) is the extension of the local interactions among
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cells!!l; 7(o(Z)) represents the cell type of o(Z); A (o) is the target area of a partic-
ular cell type and A is the strength of this area constraint. The relaxation B > 0 is
a new parameter, which can be interpreted as the range of the energy penalty due
to cell’s deviation from a designated target areal?.

A convenient way of writing (1) is

2
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Z 7 eM(T) spins o Sl ﬁ
where \ = )\A2 =G5 /Ar(0), 0 = 0/Ar (o), and
B = B/A: (). (3)

Moreover we also define

adhesion __
Hj =Y Y rte@reo@y L So@ow)): (4)
T 7 eM(z)
and
Hyolume — X min (@, — 1+ 9)2. (5)
’ sp%aée[ B

Drawing on definitions (4) and (5), for each S, one has that

Hy = Hgdhesion + Hgolume. (6)
If we take 0 < B < AT(U) then

0<pg<l, (7)
and the family of Hamiltonians

H={Hp:0<p3<1} (8)
must satisfy

lim HB = HGlazzer Graner; (9>
B—0+

where

HGlazzeT Graner — Z Z (o (F)), T(a(f'))(l 6 —" +/\ Z .,.(U)

T #eM(T) spins o

Here we use a Moore neighborhood.
21"B" stands for the "Targetband" in the code.
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and

. _ 2
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)
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Therefore, if we draw upon (9) then, for 8 sufficiently small, we expect to reproduce
the same results found in [1]. On the other hand, (11) means that for 8 ~ 1, one
has that the adhesion strength will be the driving force of the system and our
simulations should be consistent with this claim.

0.1 Procedure
The simulated cells are of two types, red cells, which we will refer to as r, and
the yellow cells which we will refer to as y. Besides that, we refer to the medium,
wherein these cells exist, as m. Hence, 7(Z) can assume three values r, y, and m.
To mimic cytoskeletally-driven membrane fluctuations, for each 0 < g < 1, we
repeatedly attempt to replace the index o of a randomly chosen lattice Z by the one
of a random lattice site ¥ € M(g) At each Monte Carlo step in the simulation, we
convert the index with probability

exp(fAHg/T), AH/@ > 0;

P(AH,) = { 1, AHz <0;

for T' > 0, and with probability

0, AHB > 0;
P(AHg) = 0.5, AHg=0;
1, AHg <0
fot T = 0.
Results

Simulations: 8~ 0

As we have justified in the previous section, for § = 0 and, in fact, for g sufficiently
small, we hope to recover the same results found by [1]. Indeed, for § = 0 and
B = 0.014, we see in the Figure 1 that there is a slightly difference between the
simulations, but yet the pattern behavior is very similar. Likewise, for 5 = 0.014,
see Figure 2, we could reproduce very similar patterns as in the Glazier-Graner
Model. These simulations have shown that our approach is consistent.

Simulation: 0.286 < g <1

Insofar as § tends to 1, we observe that adhesion becomes the driving force of the
system. If this is the case then, under the Differential Adhesion Hypothesis, one
has that the cells will prefer to shrink seeing that, in doing so, the Hamiltonian
decreases. In fact, for 8 > 0.286, see Figure 3, we see that the two clusters of yellow
cells have become smaller compared to the first simulation for § = 0.014. This is
much clearer for 8 = 0.786, for which one of the initially formed cluster of yellow
cells dissolves into the medium after few MCS. For 5 = 0.857, one has that all the
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cells die out. An intuitive argument for this rests upon the Hamiltonian. In fact, as
we have seen in the section 2, for 8 = 1, one has that

~ _ 2
Hs~Y D> Jeo@nmo@nd = So@o@) TA Y (a0) (12)

T #FeM(T) spins,o

Hence, it is more energetically favorable for the system if the term
A Y (a)? (13

decreases. As for the red cells, due to their low adhesion, they mix better with the
medium which causes them to dissolve into it faster. Under the DAH, they will
shrink until they disappear because a decrease in the cellular boundary elements
will certainly cause the Hamiltonian to diminish.

In line with the scope of this project, we have also simulated for "Mixing", see
Figure 4, with different values of the dimensionless parameter . As the cells adhere
equally well to each other, under the DAH, they prefer to cling onto each other
seeing that it prevents them from increasing the boundary elements which, in turn,
would cause the Hamiltonian to increase. Moreover, insofar as § approaches 1, the
system goes toward configurations in which the cluster of cells becomes smaller.
In fact, if we draw on (13) then we can easily see that this is more energetically
favorable for the system. For 8 = 0.743, the cells start dissolving into the medium
after few MCS.

Simulation: T'= 10

For 8 = 0, we have already seen that we recover the Glazier- Graner model. In
fact, if T'= 0 then the system gets stuck at a local minimum and, at T = 0, it is
unlikely for the system to escape from such a configuration. This happens because
all the systems states, within a small neighborhood of this minimum, have a higher
energy. Regarding the simulations, it implies that the system will remain frozen. On
the other hand, for the modified Hamiltonian Hg, with 5 > 0, not all the cells are
penalized with respect to the area constraint. This implies that the system kinetics
will change considerably. To illustrate that, we have simulated with cells adhering
equally well to each other (see Figure 5). For 5 = 0, at T = 0, once the minimum
has been found, the system prefers to remain frozen and a boundary cell neither
moves inward through the cluster of cells nor outward through the medium. This
is because it could generate an increase in cellular boundary elements which, in
turn, would cause HgLazier—Graner t0 become higher. However, for 0 < g < 1, we
see in the simulations that the dynamics of the system changes significantly on the
boundary. Due to the relaxation of the area constraint, we see that the cells on
the boundary may take up the space in the medium seeing that it can now cause
Hgomme to decrease. However, this is also compensated with a decrease in volume
size seeing that it also guarantees that Hgdhe“‘m decreases what results in a lower
Hpg. The cells inside the cluster, away from the boundary, prefer to shrink and barely
take up each other’s space as it is still energetically more favorable for the system.
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Figure 1 Mixing for 5 =0 and 8 = 0.014. For B = 0 and B = 1. Simulation.
Jrr = Jyy = Jry = Imr = Imy = Jmm = 10. A; (o) = 70. A =10. T = 40.

Therefore, the kinetics of the systems can be reduced to an active boundary whose
elements keep dissolving into the medium. As the parameter S approaches 1, one
has that Hg#"¢*i" becomes the main driving force and the cells dissolve faster into
the medium until all the cells disappear.

Discussion

In this project, we have provided a modification of the Glazier-Graner Hamiltonian.
The results are consistent with the simulations performed in [1] for low values of
the parameter 8. For higher values of 3, the system goes through a lot of different
phenotypes before it finally undergoes total apoptosis. At T' = 0, different from
the simulations performed with the original Hamiltonian, i.e., for 5 = 0, we could
free the system from getting stuck at a local minimum. Indeed, at T' = 0, we have
simulated an active cellular boundary leading the system to total apoptosis. As for
the limitations, we can say that the modification does not lead us to properly get
cell sorting because its dynamics is at the expense of structure. However, we can
exhibit lots of "phenotypes" by varying the parameter § when cell is undergoing
apoptosis, which might shed light on some interesting biological questions. As for
the future, we can explore the family (8) and examine if interesting phenotypes,

which might match experimental observations, can arise from it.

Program Code

We used software Tissue Simulation Toolkit, version /TST0.1.4.2.tar.gz, down-
loaded from: http://sourceforge.net/projects/tst/ We made some small changes in
this code all marked with "Milton & Jan'. For the modified code see the adnex.

Program listings or program commands in the text are normally set in typewriter
font, e.g., CMTT10 or Courier.

Main modification in ca.cpp

/* Milton & Jan main modification. */
gemeten=0;
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Figure 2 Dispersal. 5 = 0.014. B = 1. Simulation.

Jrr =145 Jyy = 45 Jry = 95 Imr = 2; Iy = 16; Jnm = 0. AT(”) =70. A=10. T = 40. Cell
mixing with the medium. 8 = 0.014. B = 1. Simulation.

Jrp = 105 Jyy = 205 Jry = 10; Jnr = 15 Jmy = L Jnm = 0. Ar(o) = 70. A = 10. T = 40.
Engulfment. 8 = 0.014. B = 1. Simulation.

Jrr = 8; Jyy = 55 Jry = 95 Jmr = 10; Jmy = 15; Jmm = 0. A7 (o) = 70. A =10. T' = 40. Cell
mixing with the medium. 8 = 0.014. B = 1. Simulation.

Jrr = 10; Jyy = 20; Jry = 105 e = 15 Iy = 15 Jmum = 0. AT(U) =70. A =10. T = 40. Cell
sorting(Tumor invasion). 8 = 0.014. B = 1. Simulation.

Jrr =1 Jyy = 15 Jry = 10; Jr = 105 Sy = 105 Jm = 0. AT((,) =70. A=10. T = 40.

if ( sxyp == MEDIUM ) {
gemeten=1,
if ( ( (kcell)[sxyl. Area() - (*cell) [sxy]. TargetArea())"2 >
Targetband ™2 ){

DH += (int)(par.lambda * (1. - 2. *  (double) ( (xcell)[sxy]. Area() -
(* cell) [sxy]. Target Area()+Targetband) ));
};/7if ( ( (xcell) [sxyl. Area()
}//if ( sxyp == MEDIUM ) {

if ( sxy == MEDIUM && gemeten==0){ gemeten=2;
if  (((x cell) [sxypl.Area() - (*cell) [sxyp]. TargetArea())"2 > Targetband~2 ) {
DH += (int)((par.lambda * (1. + 2. *
(double) ( (*cell) [sxypl.Area() -
(* cell ) [sxyp]l. Target Area()-Targetband) )));
}¥// if C ( (kcell)[sxypl.AreaQ -
}// if ( sxy == MEDIUM && gemeten==0 &&

else if (gemeten==0 ){
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Figure 3 Dispersal. In order: 8 = 0; 5 = 0.014; 8 = 0.786; 8 = 0.857.
B =0; B =1;B = 55; B=60. Simulation.
Jrr = 14 Jyy = 45 Jry = 95 Imr = 25 Imy = 105 Jmm = 0. A; (o) = 70. A =10. T = 50.

if ( ( ( (kcell)[sxypl. Area() - (*kcell)[sxypl. TargetArea())"2 >
Targetband~2 )) {
DH += (int)((par.lambda * (2. + 2. * (double)
( (kcell)[sxypl.Area() - (*xcell) [sxypl. TargetArea()-Targetband
) )));
¥//7if ¢ ( (kcell)[sxypl. AreaQ) -
if (((Ck cell) [sxy]. Area() - (*cell ) [sxy]. TargetArea())"2 > Targetband~2 )) {
DH += (int)((par.lambda * (2. + 2. * (double)
( - (*xcell)[sxyl. Area() + (*cell) [sxy]. TargetArea()-Targetband ))
));
}Y// if if ((((* cell) [sxy]. Area() -
}// else if (gemeten==0 )

/* End of main modification by Milton & Jan */
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Figure 4 Mixing. 8 = 0; 8 = 0.214; 8 = 0.500, 3 = 0.743. B = 0; B = 15; B = 35; B = 52.
Simulation. Jyy = Jyy = Jry = Jmr = Jmy = Jmm = 10. A, () = 70. A =10. T = 40.
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Figure 5 Mixing. 8 = 0; 8 = 0.214; 5 = 0.500; 8 = 0.785. B = 0; B = 15; B = 35; B = 55.
Simulation. Jrr = Jyy = Jry = Jmr = Imy = Jmm = 10. Ar(5) =70. A =10. T' = 0. In the
first figure we see a frozen state for 8 = 0, and insofar as (3 increases, the boundary of the cluster
of cells becomes more active, dissolving its "boundary cells" at the same time that internal cells
becomes smaller until they dissolve when becoming part of the boundary. For a critical value of 3,

we have that all the cells die out.




