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Abstract

In this essay we will critically explore Turing’s reaction-diffusion models as a
mechanism for pattern formation in the domain of living systems. More
specifically, we will be mostly concerned about the question to what extent
Turing’s mechanism underlies the formation of stripes in the skin of zebrafish.

Introduction

A big puzzle in Biology can be translated into the question of how can a complex
organism come from a single cell? Alan Turing [1] shed light on the question by
proposing a reaction-diffusion model to describe the process of pattern formation.
In his mental mechanism, for a pattern to emerge, it was necessary the presence
of two interacting morphogens!!! that while diffusing would react with one another
which would break spatial symmetry giving rise to the observed patterns. This
principle was revolutionary but counterintuitive seeing that diffusion mostly takes
an stabilizing role in a system. However, Gierer and Meinhardt [3] performed linear
stability analysis to show that this compromise between diffusion and reaction must
be under very strict conditions for the system to generate a pattern, i.e., if local
autocatalysis and long- ranging inhibition is involved.

Grounded on deductive-nomological and mechanistic accounts of explanation, i.e.,
the integration between mechanisms and their mathematical counterparts as an ap-
proach for modeling of biological phenomena, we regard the qualitative and quanti-
tative description of a model as its fundamental properties [4]. More specifically, as
for its qualitative description, we refer to the experimental evidences of the causal
contributions of the mechanisms. Regarding its quantitative description, we refer to
the down to minute generation of quantitative dynamic-details of the phenomena
through the mathematical counterparts of the proposed mechanisms 2. To simplify
the wording, we refer to the later properties as empirical consistency and predictive
precision respectively.

Moreover, as for a "measure" of confidence in a model, we refer to its robustness.
How invariant are the model’s results under different assumptions [2]? To do this
in a systematic way, we categorise model robustness in parameter robustness!3 and
structural robustness 4. Upon doing so, we are now able to use formal logic in
our critical analysis of the models described in the next sections. This essay is

" The shape-formers": they can be molecules, hormones, genes and etc.
2ITn this hypothetical inductive-deductive cycle, we take falsifiability implicitly into

account seeing that we are dealing with models that are certainly falsifiable.
BlHow sensitive is the model to perturbations in the range of the parameters.
M How invariant is the model under more realistic representations.
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organized as follows. Firstly, we briefly introduce Turing’s reaction diffusion models.
Secondly, we analyse the Yamaguchi-Yoshimoto-Kondo “s mechanism as a model for
the formation of stripes in the skin of zebrafish and we refer to its insights and
drawbacks related to pigment patterning. Subsequently, we explain the Bullara-
Dekker‘s model and we put it into perspective with Yamaguchi-Yoshimoto-Kondo “s
model followed by a critical discussion of the simulations. Lastly, we conclude the

essay by summarising it and by providing a concise discussion hereof.

Turing's reaction diffusion model

In 1951, Alan Turing published his grounding-breaking paper [1] concerning pattern
formation. The underlying principle is that an instability can emerge from the inter-
action of two stabilizing processes. More specifically, two interacting morphogens
while diffusing keep on reacting with each other which ends up breaking spatial
symmetry giving rise to the observed patterns. This mechanism is translated into

the following dynamical equations

ou 9
E*Duv U+f(U,U),
ov 9
E *va v—l—g(u,v),

(1)

where u, and v stand for the concentrations of the involved morphogens, D,,, and
D, are the respective diffusion coefficients and f(u,v) and g(u,v) are the reaction
kineticsll. It is consistent with the proposed mental mechanism seeing that the
dynamics of the morphogens is fully determined by the compromise between the
diffusion and the chemical reaction processes. From intuition to a precise descrip-
tion, how can we mathematically define Turing patterns? In fact, they are stable,
time-independent, spatially heterogeneous solutions of (1). To generate these inho-
mogeneous steady states, one must perturb the system away from its equilibrium
which is done when diffusion of the morphogens drives the system unstable in time.
Having defined that, and recalling from the theory of partial differential equations
that it is not to easy to analytically solve the system (1), we can reasonably assume
that a solution of (1) reads

ept ezqw’

(2)

with p > 0 and ¢ € R being the wave-number of a Fourier mode. Upon doing so,
by drawing on (2), we can perform linear stability analysis of (1) to arrive at the

conditions

BIThis system is closed when augmented with suitable boundary and initial condi-

tions.
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fu+ 90 <0,
fugv - fvgu > 07
Dygy + Dy fo, > 2\/DuDv\/(fugv - fvgu) >0,

3)

under which Turing patterns can emerge [5]. In other words, if (3) holds then p > 0
and one has that eP* will grow unstable in time leading the system to a dramatic
change in its spatial structure, embodied into the term e?®, which, in turn, will
cause the pattern to form. Depending on the sort of problem to be studied, the
reaction kinetics of (1) is modified which gives rise to a large class of reaction diffu-
sion models [7] . However, can we provide examples of reaction kinetics from which
Turing patterns emerge and resemble biological patterns very closely? In fact, it
has been shown that a lot of observed biological patterns [6] can be computation-
ally reproduced!®! by using an idealized phenomenological reaction-diffusion system
whereby the reaction kinetics hypothetically describes the interaction between an
inhibitor and an activator. This system was proposed by Gierer and Meinhardt [3]
and it reads as follows!!

2
U
flu,v) =c1 — cqu + CSma

g(u,v) = cqu® — csv,

(4)

where ¢1, o, ¢3, ¢4 and c5 are the deterministic rates of the reactions!®!. The pa-
rameter k is a measure of the saturation of the activator w. In (4)1, one sees that
the activator u has a positive feedback on itself, degrades, and also saturates, de-
pending on k, and has a negative feedback of the inhibitor v. In (4)s, one sees that
the inhibitor v degrades and has a positive feedback of the activator u. However,
we want to translate this mental process into a biological context. Can we now give
a biological meaning to the abstract conditions showed in (3) with respect to the
Gierer-Meinahardt kinetic system (4)? In fact, for this specific kinetics, it is not too
difficult to show that the conditions (3) are reduced to the single rational rule

D > (3+2V2)c,
)

ITn the sense of being very similar to the observed biological pattern. In contrast,

we will use "reproduced down to minute" to mean a down to minute description of

the observed biological phenomenon.
[7'This is the dimensionless form of the original kinetic system.
BI'These are thought to be estimated from empirical data.
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Figure 1 Yamaguchi-Yoshimoto-Kondo's mechanism. Here, we see that the yellow cells have a
long-range negative feedback on this circuit while the black cells have a short-range positive and
also negative feedback, seeing that they can saturate.

where

D =D,/D,, (6)
and

c=cq/cs. (7)

Hence, if (5) holds then Turing patterns can emerge for the Gierer-Meinahardt
reaction kinetics (4). More specifically, one has that the inhibitor v must diffuse
sufficiently "faster" than the activator w, i.e., D, > D,, and that the activator
must "produce" enough of itself, i.e., ¢ > 0 sufficiently large, so that the condi-
tion (5) holds. Or equivalently, if local autocatalysis and long-ranging inhibition
is involved then Turing patterns emerge for the reaction kinetics (4). Despite be-
ing at a hypothetical level, Geirer-Meinhardt’s model is able to reproduce a lot of
observed biological patterns [6] which suggests that an activator-inhibitor system
is sufficient to yield a biological pattern. This is conceptual insightful because it
provides normative insights. However, what about a down to minute reproduction
of a biological phenomenon? Is there a real living system in which we can actually
find Turing patterns? In other words, is there a living system for which Turing's
mechanism provides a down to minute generation of quantitative dynamic-details
of pattern formation? A positive answer to this question would definitely validate
the model at the molecular level. From now to the end of this essay, we will be
entirely concerned about this question.

Yamaguchi-Yoshimoto-Kondo’s model
In 2007, grounded on the normative insight provided by Geirer-Meinhardt’s
modell®!, Yamaguchi, Yoshimoto and Kondo [8] proposed a mechanism!'%! to explain

T'We refer to the inclusion of an adequate activator-inhibitor system.
1oIThere is actually no reason for us to name this model in this way. In fact, their

proposed model is precisely the Gierer-Meinhardt’s model. However, thereby we
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Figure 2 (A-D) Regeneration of stripes: A) One week after ablation of melanophores and
xanthophores in the body of zebrafish. B) After 10 days, segregation of the cells can be observed.
C) After 2 weeks, we see clearly the formation of a pattern but segregation still takes place. D)
After three weeks, regeneration process seems to be completed and a stationary pattern can be
clearly seen in the ablated region. (E-F) Simulation of Yamaguchi-Yoshimoto-Kondo's model.
Parameters: a = 0;b = 1.2;¢ = 0.4; D,, = 1 x 10~2; D,, = 20 x 10~ 2. To reproduce ablation, the
center region in (E) was replaced by a random pattern. In the simulations, u, the activator, stands
for the white stripes while v, the inhibitor, stands for the black stripes. (Methods) As for the
ablation, they used a laser to break each pigment cell in the ablated region. Regarding the
recordings, a time-lapse technique was applied by using a digital camera during =~ 50 — 60 days.

the formation of stripes in the skin of zebrafish. The pigment cells in zebrafish “s
skin comprise melanophores (the black cells), zanthophores (the yellow cells) and
iridophores (the white cells) [10]. In 2003, Hirata et al [11] reported that the distri-
bution of melanophores and xanthophores mainly determines the pigment pattern in
the hypodermis of zebrafish. Presumably based on this information, Yamaguchi et
al [8] performed an experiment in which they used a pulse laser system!'!l to ablate
all the melanophores and zanthophores from the target region without damaging
the iridophores. After having erased the whole pattern from the ablated region!'?!,
figure 2, they observed that the regeneration process took place leading the ablated
region to form new stripes. The observation was consistent with Turing’s mental
mechanism, seeing that ablating the target region drove the "system" away from its
equilibrium. Hence, they hypothesize that the formation of the stripes is controlled
by the interactions between melanophores and zanthophores, figure 1, or rather, that
long-ranging inhibition of zanthophores and local autocatalysis of melanophores is
sufficient to give rise to the observed pigment pattern in zebrafish. Mathematically,

this mechanism is translated into the following dynamical equations

want to draw the reader’s attention to a specific context, i.e., zebrafish as a model
organism to unravell the underlying mechanism of pigment pattern formation in

vertebrates.
11With a microscope attached to it.
121The ablated region was in the body not in the fins.
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Figure 3 Pigmentation pattern in a mutant zebrafish. In this 3 x 2 matrix we have that: (1-1)
The wild type zebrafish exhibiting the stripes. (2-1) Mutant zebrafish lacking melanophores, total
lost of stripes in the body and fins. (2-2) Mutant zebrafish lacking xanthophores, total lost of
pattern in the body and fins. (1-2) The mutant zebrafish lacking iridophores, total lost of stripes
in the body, but, pattern left unaffected in the fins. What does it suggest? This certainly suggests
that, perhaps, melanophores and xanthophores are sufficient for patterning in the fins what
implies that the mechanism underlying pigment patterning in both regions, body and fins, is
different. However, (3-1) and (3-2) show two mutants in which the pattern changes in the same
way continuously from the body to the fins which strongly suggests that the underlying
mechanism is the same in the body and in the fins. The names of the mutant genes are displayed
on the lower right side of each picture.

ou u?

— =D,V? — -
o Viu+c 62u+(1+ku2)v’
Ov

5% D,V?v +u? — v,

(®)

where, u, the activator, stands for the concentration of black cells, melanophores,
and v, the inhibitor, represents the concentration of yellow cells, i.e., zanthophores.
Therefore, the dynamics of this model reduces to the Gierer-Meinhardt’s reaction
kinetics (4).

Regarding empirical cosistency, there are few issues. In 1999, Lister 9] reported
that in a mutant zebrafish, lacking melanophores, no pigment pattern forms in the
body or in the fins. In 2000, Parichy et al [12] showed that in a mutant zebrafish,
lacking production of zanthophores, no pigment pattern forms in the body or in the
fins. These facts are certainly consistent with Yamaguchi-Yoshimoto-Kondo’s hy-
pothesis. However, in 2013, Frohnhofer et al. [13] carried out an experiment in which
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a mutant zebrafish, lacking iridophores, produced no pattern in the body but left the
pigment pattern in the fins unaffected. These results, figure 3, suggests that the mu-
tual interactions among the pigment cells account for pigment pattern in zebrafish.
In other words, a model cannot disregard the interactions between melanophores
and iridophores or the interactions between xanthophores and iridophores. More-
over, in 2014, Mahalwar et al. [14] reported that pigment pattern formation occurs
even though the pigment cells do not have an extensive movement ['3l. With long-
term imaging procedure, they observed that the melanophores barely move while
the movement of xanthophores is limited to the boundary region between stripe
and interstripe. The observation is a precise description of the pigment pattern
seeing that the stripes, consisting of melanophores, are surrounded by a thin layer
of iridophores (interstripes) which, in turn, is covered by xanthophores. This sug-
gests that xanthophores repelling the melanophores and attracting the iridophores
causes the pigment pattern to emerge. In other words, if diffusion cannot be the
driving force of pigment pattern formation then other forms of cell-cell interaction
must better account for the pattern formation process. These facts are really harm-
ful for Yamaguchi-Yoshimoto-Kondo’s model seeing that the interactions between
melanophores and zanthophores through diffusion have been assumed to play the
major role in their mental mechanism. This suggests that their model is just a sub-
set of a more complex molecular process underlying the pigment pattern formation
in zebrafish.

As for predictive precision, although they were able to reproduce a regeneration
process culminating in the formation of a striped-pattern, figure 2, the " down
to minute dynamics" requirement is not met. However, their simulations cannot
be seen as mere coincidences but, instead, as evidences for the hypothesis that
the underlying mechanism is in a more complex system of regulatory interactions.
What can we say about the robustness of this model? With respect to parameter
robustness, there are some remarkable points. In 1982, Murray [17], drawing on the
conditions (3), showed that the parameter spacel of Gierer-Meinhardt’s model is
constrained to fine-tuning. In fact, he showed that slightly changes in the parameters
can have a negative impact on the results of the model seeing that Turing patterns
might no longer emerge. He also showed that the same point in the parameter space
could stand for different Turing patterns owing to small variations in the initial
conditions. Furthermore, he showed that the parameter space of this model allow
the parameters to take negative values what is biologically unrealistic!*5l. Therefore,
Yamaguchi et al [8] had to adjust the parameters to cause the system to develop
stripes. For example, they reported that k[0l was set equal to 0.4 given that slightly
smaller and larger values thereof were giving rising to spots or network. If we now
consider structural robustness, they did not test the model across more realistic
assumptions such as the compelling effects of growth, noise and gene-expression
delays [15].

3sIRoughly speaking, there is formation of pattern even though the pigment cells
do not diffuse.

41'The parameter domain wherein Turing patterns can emerge.

151'These parameters stand for reaction rates.

16l A measure of the saturation of the activator .
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Figure 4 Striped pattern with 1 x 10° Monte Carlo steps. (Parameters)

by =dx =dy =0;bx =sx = sy = 1;1x = 2.5; h = 16. (Initial conditions) Uniform without
xanthophores and melanophores. (a) Pattern evolves. (b) and (c) They simulated the effects of
iridophores (shadded band), which are assumed to inhibit melanophores.

Bullara-Dekker’'s model

In 2007, grounded on the experimental results reported by Mahalwar et al. [14]
as to the mechanical behavior of the pigment cells!'”), Bullara and De Decker [16]
proposed a minimal cell-based mechanism!*8! to explain pigment pattern formation
in the skin of zebrafish. This reads as follows. Despite being immobile, pigment
cells can interact locally and non-locally with each other. This compromise of local
and non-local biological interactions of melanophores and xanthophores causes the
growth rates of these cells to differ significantly from each other. This differential
growth culminates in a redistribution of these cells in the hypodermis which, in turn,
gives rise to the observed pigment patterning. Mathematically!*!, this mechanism
can be translated into the following average evolution equations

d<§§i> = bx (8i) — dx (Xi) - %SJWKXM M;_1) + (X, M), (9)
and
d(;‘fﬁ =ba(S;) — du (M) — %Sx[<Mi,Xi_1> + (M, Xii1)]

1 (10)
+ 5lXKS“ Xi7h> + <SiaXi+h>]7

where X;, zanthophores, M;, melanophores, and S;, neither of the latter ones(2°l,
denote the boolean variables describing the node i. The brackets denote the averages
of the boolean variables at each timel?!l. Hence, intuitively, (9) and (10) describes
the time evolution of the "growth rates" of the zanthophores and melanophores. How
are the "growth rates" of melanophores and xzanthophores affected according to their
mental mechanism? Or rather, what are the local and non-local rules underlying
the interactions between these cells? 1) Firstly, they assume that zanthophores and

7THere we recall that it was reported that melanophores barely move and that

xanthophores have a non-extensive movement.

18I'Without the inclusion of the interactions with the iridophores in the model.
191To define cell interactions is convenient to consider a discrete model in which the
hypodermis is modelled as a regular lattice.

[201By construction X; + M; + S; = 1.

211 4,, B;) denotes the average of having 4 at node i and B at node j.
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melanophores can emerge at random anywhere in the hypodermis not yet occupied
by neither of them. Thus, bx and by; represent the "birth rates" of zanthophores
and melanophores in node 4. 2) Secondly, they assume that these cells can die due
to ageing processes leaving the corresponding node available to be occupied again.
So, dx and djs stand for the respective "death rates". 3) Thirdly, they assume a
"short-range effect" which accounts for the effect of direct contact or competition
for nutrients. In other words, cells of the same type surrounding a cell of another
type have an inhibitory effect on it. The corresponding "short-range rates" are given
by sy and sx!?2l. 4) Lastly, they assume a positive effect on the "growth rate" of
melanophores when zanthophores are at a distance h. The strength of this "long-
range effect" is captured by [x. Having described the nature of the effects on the
expression of the "growth rates", how is the stripped pattern formed then? In fact,
short-range interactions segregatel?®! the cells. However, only short-range effect is
not sufficient to generate a pattern with a finite wavelength. The argument for this
claim rests on the assumption that the cells can randomly appear anywhere in the
hypodermis what, only under short-range effect, gives rise to a domain wherein
the different clusters of melanophores (dark cells) and zanthophores (yellow cells)
have an indefinite size. This implies that the distance between two clusters of dark
cells is not uniformly distributed so one cannot have a finite wavelength. How to
generate a pattern with a finite wavelength then? To do this, it is necessary to
control the distance at which these clusters of melanophores can emerge and it is
done by including a long-range inhibitory effect which, in fact, limits the region
wherein the melanophores can emerge. If this distance h sets the boundary of this
"forbidden region’ then one expects to get a finite wavelength of 2h. The strength of
this inhibition is given by the parameter [x. Hence, the smaller is [ x, the smaller is
the "growth rate" of melanophores which culminates in a domain only consisting of
xanthophores. On the other hand, the higher is [x, the higher is the "growth rate"
of melanophores which will presumably give rise to the stripped pattern.

As for empirical consistency, although their model relies on molecular based
facts, there is an intriguing issue. In fact, they assume that melanophores and
zanthophores are immobile. The assumption seems to be reasonable for the for-
mer. And for the latter? The authors argue that there is no evidence of large-scale
movement of zanthophores. Besides that, cell movement does not necessarily imply
pattern formation. We think that the argument is plausible given the context!?4!
of their modelling. However, further investigations should be conducted to answer
this question properly. As for predictive precision, we see in figure 4 that they could
reproduce the stripped pattern in the simulations. Therefore, Bullara et al [16], un-
der molecular based assumptions, showed that a compromise between short-range
activation and long-range inhibition, as in Yamaguchi-Yoshimoto-Kondo “s model,

122IThey also assume that the short range effects are larger than the death effects,

1. €., spp > dx and sx >dam-.
1231Tt also implies that the cells of the same type have a "short range activation"

seeing that, when locally clustered, they only favor the appearance and permanence

of cells belonging to the same type.
[24Their main goal is to get insight into the underlying mechanism given all the

compelling evidences against Yamaguchi-Yoshimoto-Kondo s model.
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is sufficient to reproduce the observed pigment pattern even though the cells are
immobile. In contrast with Yamaguchi-Yoshimoto-Kondo “s model, this compromise
is not driven by diffusion but, instead, by local and non-local biological interactions
between the cells culminating in different growth rates. Their results strongly sug-
gest that a better understanding of the respective complex regulatory network of
cells involved in pigment patterning will further help us to formulate better models
to unravel the underlying mechanism of this biological process.

Conclusion

As we have seen through this essay, it is very unlikely that diffusion-driven instability
underlies pigment pattern formation in the skin of zebrafish. How can we unravell
the underlying mechanism then? To do so, it is necessary to know how information
is carried out by the cells. In order to properly answer this, it is necessary to
understand the complex regulatory network involved in the respective biological
process. Hence, from this perspective, a biological pattern is a systemic property
and not an isolated event. This is in line with the field of systems biology wherein one
tries to account for systemic properties of the organism. What is the most adequate
modelling strategy then? What kind of models should we expect/propose then? This
is a question whose answer depends on the sort of data being analyzed. In fact,
Metabolomics provides us with "quantitative data", which calls for a continuous
approach. On the other hand, Genomics yields "qualitative data", which calls for a
discrete approach. Hence, toward the description of systemic properties, the mix of
data types suggests a formalism through which we can either project our reasoning
onto the continuous level or onto the discrete level. Therefore, hybrid models seem
to be necessary to properly describe biological phenomena.
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