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Abstract

In this thesis, we analyze and evaluate a phenomenological model for cell differen-
tiation based on Hill-function type interaction kinetics. This is an extension of a
model formulated by Dr. Sui Huang that has been proposed by Dr. Stefan Sem-
rau to explain the observations of retinoic-acid driven mouse embryonic stem cells
differentiation. Thereby, our main goal in this thesis is to evaluate the proposition
that the model suffices as a conceptual mechanism of the performed experiments.
Towards this end, we investigate how Frege’s theory of judgment can be used along
with Kant’s theory of judgment to provide a systematic evaluation of phenomeno-
logical mathematical models.
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List of Figures

1 Here we see the illustration of the "justice symbol" above the two
faces. The later ones stand for the duality of the judging agent as an
empirical ego and as a transcendental ego, being represented by the
judgement symbols `Ψ A and ` A respectively. Below the two faces,
one sees the decomposition of the primitive scenario scMλ0 , which starts
by applying a suitable judgment Π1, leading to the scenario scMλ1 ,
which, in turn, by applying judgement Π2, is shifted to the scenario
scMλ2 . The respective decomposition process stops when scenario scMλN -
similar to the observation O-is found, or when a contradiction ⊥ is
found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 This cartoon has been taken from [78]. Here, one sees the depiction
of the process of transcription and translation in a prokaryotic cell
(bacterium) and in a eukaryotic cell. In contrast to a prokaryotic cell,
in which translation presumably begins right after transcription, the
eukaryotic apparatus is much more complex involving at least three
levels of regulation prior to translation: mRNA capping, polyadeny-
lation and RNA splicing. . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 This cartoon has been taken from [51]. MicroRNAmechanism: RNAp
II (RNA polymerase II: a ribozyme) transcribes pri-miR (primary mi-
croRNA); DGCR8-Drosha complex (DGCR8: a protein; Drosha: a
RNase III: a RNA enzyme, that is, a ribozyme that catalyzes degra-
dation of RNAs in small fragments) processes pri-miR into pre-miR;
Exportin 5-RanGTP complex (Exportin 5: a protein; RanGTP: a
protein) transports pre-miR out of the cell nucleus to the cytoplasm;
Dicer (a RNase III) processes pre-miR into mature miR; RISC (a mul-
tiprotein complex) binds to miR to provoke repression of the trans-
lation of mRNA; RISC binds to miR to cleave mRNA; RISC can
promote translation of mRNA by binding to its 5′ untranslated re-
gion (5′ UTR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 This cartoon has been taken from [30]. A chromosome as a compacted
chromatin, or equivalently, a compacted structure consisting of DNA
wrapped around histone proteins. . . . . . . . . . . . . . . . . . . . . 24
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1.4 This cartoon has been taken from [20]. Here, one sees an illustration
of the process of histone acetylation and cytosine methylation. In
fact, HAT enzymes introduce an acethyl group to histone proteins
which causes DNA to uncoil itsef. That allows TFs to bind target
DNA sequences culminating in the transcription process performed
by RNAPs, while HDACs enzymes removes the acethyl group from
histone proteins what abrogates TFs due to the coiling of DNA. . . . 25

1.5 This cartoon has been taken from [102]. Here, one sees a "directed
graph" in which the "nodes" represent the concepts. The direction
of each "edge" is determined by the "conception order" which means
that the concept C1 is conceptually dependent upon the concepts C2

and C3 and so forth. However, the concepts C2 and C3 are not concep-
tually related to each other. That means that {C1, C2, C3, C4, C5, C6}
is "partially ordered". Furthermore, the concepts C4, C5 and C6 can
be thought as the most fundamental notions or as the irreducible
ones, that is, the primitive ones. Therefore, at the conceptual level,
one might regard gene regulation as a partially-ordered hierarchical
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 This cartoon has been taken from [88]. Here, one sees an illustration of
the proofreading process through which RNAP can fluctuate between
backtracked and active state. . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Cartoon taken from [107]. So, upon unbinding of repressor, RNAP
initiates transcription with subsequent binding of several ribossomes
to mRNA, which folds into a polypeptide and undergoes localization
to the inner cellular membrane and after maturation of fluorophore,
it can be easily detected by a fluorescence microscope. . . . . . . . . 31

1.8 The Markov chain showing the transition probabilities regarding the
two stage model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9 A) The cartoon and the plots have been taken from [90]. Two stage
model with the promoter being always active. B) A simulation com-
paring the analytical solution of the two stage model and the numeri-
cal simulation of the master equation by using the Gillespie algorithm.
Here, we see that the higher is γ, the better is the fitting. Moreover,
for a > 1, one has that the distribution is peaked at a positive num-
ber. C) Here, for γ = 10, one sees a "perfect match". Moreover, as
a < 1, with a high b = 100, ones sees that it is peaked at 0. D) Here,
the Kullback–Leibler divergence quantifies the effects of small γ. As
we see, for γ around 10, one has a perfect match, whereas for γ < 1,
one sees a high divergence. This high divergence is due to the fact
that, in this case, proteins are being degraded while being produced
during the lifetime of a mRNA, so the probability distribution de-
scribing the number of proteins per mRNA cannot be geometrically
distributed which, in turn, implies that the probability distribution
of the number of proteins in the cell cannot be the negative binomial
what is reflected in this high divergence effects for lower γ. . . . . . 37
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1.10 A)The cartoon and the plots have been taken from [90]. The three
stage model including the transition of promoter between active and
inactive states. B) and C) Similar results (unimodal behavior) for
slightly high transition rates. D)Here, for small transition rates, one
sees bimodality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.11 Histograms taken from [107]. A) Here we see that the histogram of
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1.13 This cartoon has been taken from [37]. A) Genome and the respective
GRN fixed on evolutionary timescale. B) Although the wiring of the
GRN is invariant on evolutionary timescale, one has that the level of
gene expression varies. C) Here, one sees the illustration of the GRN
in the framework of the dynamical systems theory. In the context of
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level of gene expression varies over time. . . . . . . . . . . . . . . . . 58
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essentially controlled by built-in functionals (the interplay between
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1.16 This cartoon has been taken from [23]. As we can envisage in the car-
toon, noise in gene expression boosted by a gene regulatory network
determines in which cell type stem cells will differentiate. . . . . . . . 60

1.17 This cartoon has been taken from [43]. Here, one sees the illustration
of fertilization, cleavage and blastulation. . . . . . . . . . . . . . . . . 63

1.18 This cartoon has been taken from [43]. Here, one sees the begin-
ning of the implantation process by which, the blastocyst invades the
endometrium causing the trophoblasts to differentiate into cytotro-
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tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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1.20 This cartoon has been taken from [79]. Here, one sees the bilami-
nar blastocyst completely implanted in the endometrium by the end
of day 8. More specifically, one clearly sees the bilaminar layer set-
ting two cavities apart from each other: the amniotic cavity and the
primitive yolk sac. Moreover, one sees the appearance of the tro-
phoblastic lacunae in the layer of syncytiotrophoblasts, the emergent
exocoelomic membrane resulting from the migration of hypoblasts,
and the approximation of endometrial capillaries (blood vessels) by
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planted 12-day human bilaminar blastocyst. . . . . . . . . . . . . . . 68
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has that maternal blood flows noticeably through the lacunar net-
works, the yolk sac is formed, and the chorionic cavity is constituted.
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1.28 Figure taken from [74]. Here, on the left side, one sees the scatter plot
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Preface

Over one year ago, I started attending the lectures of the subject " Logic and the
First-person" given by Dr. Maria van der Schaar at Leiden University. But, why did
I delve into the philosophy of logic to accomplish my master project? In fact, I did
so because I was trying to evaluate a phenomenological mathematical model when I
got deeply confused about what I had exactly been doing up to that moment. After
being faced with some inconsistencies in my own thinking, I started questioning the
mentality to which I had been subject as regards phenomenological mathematical
models. Despite having gotten profoundly frustrated, I was feeling very motivated
to go through that process and learn as much as possible therefrom.

But, what was the motor of my thinking until that moment ? In fact, the driving
force of my actions towards an evaluation procedure was the aphorism attributed to
Dr. George Box : "Essentially, all models are wrong, but some are useful.". However,
if the concept of model fundamentally means an approximated representation of an
ontological counterpart and if such a representation is inherently simplified and
idealized, then the respective aphorism offers no elucidation to how we ought to be
performing an evaluation procedure. In fact, knowing which observations are found
in the model is not logically equivalent to knowing which ones are not therein.
Furthermore, being able to tell which ones are not produced by the model, might
either unravel properties that contradict the ontological counterpart, which, in turn,
would strongly suggest that I should rule out the model, or might provide myself
with a suitable strategy to modify or extend it.

On the other hand, such a task seemed not to be doable given that it purportedly
entails a continuous search within the parameter space. Hence, I knew that if I
intended to come up with an evaluation procedure enabling that, then I should
ensure that it could be done algorithmically, that is, by constructing a method with
which I could reduce it from a continuous to a discrete search in a systematic way.

Next, after this primary process through which I acknowledged that "my thinking
activity" had been engulfed in a domain wherein psychologism was governing it,
that is, in which I allowed that inherited beliefs (ideas regarded as "mental laws")
formed the basis of my reasoning as to phenomenological mathematical models, I
was then entirely convinced that I was in need of a suitable philosophical framework
to approach such an envisaged evaluation procedure.

Nonetheless, what does it have to do with Frege’s theory of judgement? In fact,
a necessary condition for one to evaluate a phenomenological mathematical model
is that one makes judgements about that. So, I must make assertions on the model
that can be proven true or false. The later elucidation reveals that the first person
perspective cannot be neglected in our investigation. And what is the role of logic
in the latter process? In fact, logic gives the rules of inference with which I can
prove mathematical assertions on the model. The latter essentially stipulates the
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style in which I have tried to write the thesis. Indeed, the writing is performed in
the domain of analytical philosophy wherein argumentative clarity and precision−by
means of formal logic−are central points. The idea was to annihilate any bias in the
reasoning to the extent that I could function optimally and let logic speak by itself.
Consistently, I have often used logical symbols instead of known mathematical jargon
when constructing the mathematical assertions given that I feel much comfortable
with the former than with the later. Presumptively, the adopted writing style partly
explains why the thesis has become rather extensive with respect to known standards
for a master thesis.

Now, why does Frege’s theory of judgement suit the purpose? In fact, draw-
ing upon the approach of Dr. Maria van der Schaar, the notion of judgement in
Frege’s theory has a logical account−an acknowledgement of the truth of an as-
sertion. Thereby, if we regard a phenomenological mathematical model as a mere
mathematical object and if the truth of mathematical assertions on it must be ob-
jective, then Frege’s notion of judgement is a suitable concept to understand the
essence of the judgements made by the judging agent, which, in turn, is interpreted
as being a transcendental ego. On the other hand, a phenomenological mathematical
model is the description of a phenomenon taking place in the world so, by construc-
tion, all the parameters and variables and the relations among them have specific
meanings. In that regard, a judgement as a logical notion is not adequate to appre-
hend an assertion on the model. Actually, in this case, a judgement is understood
as an empirical notion−the Kantian notion of judgment−seeing that it is a mental
process in response to an empirical activity. Hence, the judging agent, in the later
case, is said to be an empirical (psychological) ego.

Therefore, a judgement as a logical notion can only be understood from a first
person perspective while a judgement as an empirical (psychological) notion can only
be apprehended from a third person perspective, which, in turn, unveils a duality of
the judging agent as a transcendental and as an empirical (psychological) ego. So,
it now seems that psychology on its own was not the culprit of my confusion but
not having a suitable account for the interplay between logical and psychological
aspects of the model was tantamount to that.

But, how can I perform a systematic evaluation procedure of a phenomenological
mathematical model? In fact, the logical notion of judgment in Frege’s theory is
an assertion to which the truth-value ’true’ is assigned, that is, an assertion that a
determinate object falls under a concept. As there are concepts whose definitions
are dependent on other concepts−complex concepts−then there must be concepts
that are true by themselves, which cannot be defined, or better, which cannot be
reduced to other concepts. The later claim can be thought to be predicated upon the
presupposition that it is inconceivable that a concept would be apprehended by an
infinite entailment of notions. Thereby, such indefinable notions-true in themselves-
are known as primitive concepts−opposed to complex concepts.

Therefore, if we succeed in conceptualizing ’something’ related to the model
that stands for an observation of the ontological counterpart, and if we can find
the ones falling under the concept of that ’something’ playing the role of primitive
notions, then we have a method enabling us to perform a discrete search in the
parameter space of the model. In fact, if I call that "something" a scenario in the
model standing for an observation of the ontological system then the idea is that
any scenario of the model can be reduced to a primitive scenario. Therefore, if I
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Figure 1: Here we see the illustration of the "justice symbol" above the two faces.
The later ones stand for the duality of the judging agent as an empirical ego and
as a transcendental ego, being represented by the judgement symbols `Ψ A and ` A
respectively. Below the two faces, one sees the decomposition of the primitive sce-
nario scMλ0, which starts by applying a suitable judgment Π1, leading to the scenario
scMλ1, which, in turn, by applying judgement Π2, is shifted to the scenario scMλ2. The
respective decomposition process stops when scenario scMλN -similar to the observation
O-is found, or when a contradiction ⊥ is found.

can find the primitive scenarios of the model then I can potentially find any scenario
of the model, that is, I can tell whether or not an observation can be ’found’ in the
model. However, finding those primitive scenarios is not an easy task as we shall
see through this thesis. The latter schema is depicted in the Figure 1.
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for their existence. When you both come to an age at which you will be able to
understand the underlying feelings of these notes, then you will know that you have
helped me a lot through this process though paradoxical it might sound. If you
both have goals in your life then try hard to find the way in which you can achieve
them; neither will you internalize when someone tells you or makes you feel like you
cannot reach them nor will you accept the idea that you are inherently supposed
not to attain them. You must find the way in which you can disprove that, because
the burden of proof might be on you.

Milton Nogueira da Silva Junior
Leiden, March 15, 2019
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Chapter 1

Introduction

An ongoing problem in Biology can be formulated into the question of how can
a complex organism come from a single cell? Or equivalently, how can a zygote1

become an embryo? In fact, a zygote undergoes mitosis, that is, a process through
which a cell gives rise to two identical cells with respect to the genetic material
[DNA]; and cell differentiation, which is a process by which cells become special-
ized ones, resulting into a multicellular organism, or better, an embryo. What is
fundamental so as to go from an unicellular organism to a multicellular organism?
Further in this chapter, we will be giving an answer to the latter question.

Regarding the main goal of this thesis, we rely upon an argumentative approach
based on the order of conceptual priority, which will reveal a rational strategy to
evaluate Huang’s model of cell differentiation, and an extension thereof: Semrau-
Huang’s model. But, how will we do it? In fact, we will first project our analysis
onto the realm of the philosophy of logic by exploring the primitive nature of the
concept of knowledge and judgment, turning our attention toward perspectivalness.
The latter will then point us out to the necessity of a better clarification of the role
of the first-person perspective in the evaluation of a phenomenological mathematical
model.

Lastly, as for the wording, we will emphasize by italics all the important concepts
throughout this thesis. Moreover, we will use "( )" in the text whether we judge that
a better clarification ought to be provided. Next, unless we say otherwise, one has
that the brackets "[ ]" will be used for synonyms, antonyms or examples assumed to
reinforce the apprehension of an elucidation. Later in Chapter 2, one has that the
symbol "[ ]" will also be taken to represent an important action in natural deduction.

1.1 The importance of the order of conception pri-
ority in understanding gene regulation

The notion of the order of conceptual priority was introduced by Dr. Per Martin-Löf
in [55]. In fact, a concept precedes another one if the definition of the later one is
dependent upon the definition of the former. Having defined that, if we draw upon
the epistemic status of cell activity then we can say that we know that there are
specific molecules within the cell that catalyze biochemical reactions which, in fact,

1The first cell in the living cycle of an organism resulting from the fusion of the ovum and the
sperm.
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Figure 1.1: This cartoon has been taken from [78]. Here, one sees the depiction
of the process of transcription and translation in a prokaryotic cell (bacterium) and
in a eukaryotic cell. In contrast to a prokaryotic cell, in which translation presum-
ably begins right after transcription, the eukaryotic apparatus is much more complex
involving at least three levels of regulation prior to translation: mRNA capping,
polyadenylation and RNA splicing.

are involved in a variety of cellular processes including cell growth, cell division,
cell proliferation and cell death. In light of their particular function, those molecules
actually receive a more sophisticated name, that is, they are known as enzymes. The
latter concept, i.e. being an enzyme is solely functional and structural determined.

In order to unveil an entanglement of notions paved by the order of conceptual
priority, we must ask ourselves questions regarding the synthesis of an enzyme in
the cell environment. Or equivalently, How is an enzyme produced in the cell? In
fact, if we rely upon the epistemic status of the concept of an enzyme (see [15])
then we can say that an enzyme is a protein or a ribozyme. Furthermore, the set
of enzymes, which are proteins, and the set of enzymes, which are ribozymes, are
mutually exclusive. But, what is a protein? And, what is a ribozyme? Actually,
both of them are considered as a gene-product. Now, we know that the concept of
an enzyme is conceptually dependent on the notions of a protein and a ribozyme,
which, in turn, are conceptually dependent on the notion of a gene. However, what
is a gene? Despite the controversy over the concept of a gene (see [27] and [68]),
we adopt a definition that serves the purpose of our analysis. In fact, according
to Gerstein et al [27], a gene is a DNA coding sequence or a DNA functional non-
coding sequence. But, the latter concepts are conceptually dependent on the concept
of a DNA. So, what is a DNA? In fact, a DNA is a double-stranded polymeric
macromolecule that contains genes carrying instructions for the whole life cycle of a
living organism. What is intriguing about their proposed concept of a gene? It is a
circular definition, due to the fact that it depends on the concept of a DNA which, in
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Figure 1.2: This cartoon has been taken from [51]. MicroRNA mechanism: RNAp
II (RNA polymerase II: a ribozyme) transcribes pri-miR (primary microRNA);
DGCR8-Drosha complex (DGCR8: a protein; Drosha: a RNase III: a RNA en-
zyme, that is, a ribozyme that catalyzes degradation of RNAs in small fragments)
processes pri-miR into pre-miR; Exportin 5-RanGTP complex (Exportin 5: a pro-
tein; RanGTP: a protein) transports pre-miR out of the cell nucleus to the cytoplasm;
Dicer (a RNase III) processes pre-miR into mature miR; RISC (a multiprotein com-
plex) binds to miR to provoke repression of the translation of mRNA; RISC binds
to miR to cleave mRNA; RISC can promote translation of mRNA by binding to its
5′ untranslated region (5′ UTR).

turn, refers back to the concept of a gene. The latter circularity suggests that there
might be something essential about trying to capture the notion of a gene. In fact,
one has that the concept of a gene seems to be a primitive notion, or equivalently,
a notion that cannot be defined in terms of previously well-defined notions whose
definitions do not depend conceptually upon the notion being defined. However,
how can we understand such a primitive notion then? Further in this thesis, we
shall appropriately turn ourselves toward the latter question.

If we want to apprehend their proposed definition of the concept of a gene then
we need to clarify the notions of a DNA coding sequence and a DNA functional
non-coding sequence. But, such a clarification amounts to answering the following
questions. How can a gene give rise to a protein or a ribozyme? How is this
synthesis regulated then? Or rather, how does gene regulation, that is, the control
of the turning on and off of a gene, occur? In order to cast light on the latter
questions, we need to invoke the central dogma, or rather, the central hypothesis
of molecular biology as illustrated in Figure 1.1. Indeed, the central dogma is a
dogmatic mechanism for gene regulation that comprises a finite set of regulatory
proteins, that is, the transcription factors (TFs), which bind specific sites of DNA
in the surroundings of a gene of interest. Thereby, those specific sides in DNA bound
by TFs gives rise to the concept of an operator. What do TFs bind an operator
for? In fact, when bound to DNA, TFs change DNA-conformation so they can
either repress the activity of the respective RNA polymerase (RNAP) or facilitate
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Figure 1.3: This cartoon has been taken from [30]. A chromosome as a compacted
chromatin, or equivalently, a compacted structure consisting of DNA wrapped around
histone proteins.

its binding to a fixed DNA sequence, which is defined as the promoter. Regarding
the later case, RNAP will thereupon initiate the process of transcription of DNA
into a RNA. In this regard, we identify TFs involved in the repression of RNAP as
the repressor whereas TFs involved in the facilitation of RNAP are thought to be
the activator. Hence, in this hypothetical mechanism2, the promoter can be thought
as being in one of the states: active or inactive.

But, what is a RNAP? It is a RNA enzyme, or equivalently, a ribozyme. More
specifically, RNAP catalyzes the transcription of DNA into RNA. So, the concept of
RNA polymerase is conceptually dependent upon the concepts of RNA and enzyme.
But, what is a RNA? According to the central dogma, a RNA is a polymeric molecule
synthesized during the process of transcription. If a RNA can be translated into a
protein then it is said to be a coding RNA. On the other hand, if a RNA is already
functional, such as RNAP, and cannot be translated into any protein then it is
defined to be a functional non-coding RNA. But, what do we mean with a RNA
being translated into a protein? In fact, in this case, a RNA is regarded as a
messenger RNA−a mRNA.

Mainly driven by diffusion3, that is, by performing a random walk, one has that a
mRNA will be transported to the cytoplasm wherein it will be bound by a ribosome.
But, what is a ribosome? It is a complex molecule consisting of non-coding RNAs,
known as ribosomal RNAs or rRNAs, and lots of distinct proteins. The latter will
perform the translation of a mRNA into an amino acid sequence (polypeptide) which,

2It might be misleading to use hypothetical mechanism in this context if we rely upon several
papers in which one can find irrefutable evidences supporting the falsifiable status of the central
dogma, but as the author of this thesis is not able to argue to what extent the central dogma
is "true" and if the question is relevant in some "complex organism", he chooses to assign the
hypothetical status to it.

3Not necessarily true for prokaryotes, seeing that there is no membrane-bound nucleus so DNA
is already floating loosely in the cytoplasm.
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Figure 1.4: This cartoon has been taken from [20]. Here, one sees an illustration of
the process of histone acetylation and cytosine methylation. In fact, HAT enzymes
introduce an acethyl group to histone proteins which causes DNA to uncoil itsef. That
allows TFs to bind target DNA sequences culminating in the transcription process
performed by RNAPs, while HDACs enzymes removes the acethyl group from histone
proteins what abrogates TFs due to the coiling of DNA.

in turn, will thereafter fold into a three-dimensional functional molecular structure
defined as a protein. Now, if we assume that there is a one-to-one correspondence
between the set of DNA coding sequences and coding RNAs ; and between DNA
non-coding sequences and non-coding RNAs then we can, in so doing, capture the
essence of the definition of the concept of a gene introduced by Gerstein et al [27].

What guarantees that a RNA really suits the purpose? Or better, how can a RNA
be correctly transcribed by a RNAP? In fact, if an error occurs during the process
of transcription then RNA polymerase can pause transcription so as to cleave the
error away from that sequence. So, RNA polymerase can fluctuate between an active
state and a backtracked state. The latter mechanism of fidelity in the transcription
process gives rise to the notion of proofreading [82, 36, 13], as illustrated in Figure
1.6. How can we conveniently apprehend RNAs at the conception level? In fact,
RNAs can be regarded as the union of two mutually exclusive sets, that is, the
one consisting of coding RNAs, such as mRNAs, and the one formed by non-coding
RNAs. The latter can be categorized in non-coding functional RNAs and non-coding
non-functional RNAs. As for non-coding functional RNAs, one can reefer to RNAPs
and to microRNAs (miRNA; miR) as genuine examples. In fact, microRNAs are
small non-coding functional RNAs, as reported in [31], which bind target messenger
RNAs preventing them from being bound by ribosomes. So, it results in mRNA-
degradation what corroborates the repression4 of the related gene as illustratted in
Figure 1.2. The latter process leads to the notion of gene silencing. Therefore,
in the introduced conceptual framework, one has that the concept of a microRNA
suggests a stratification of the notion of gene regulation so it can be divided into

4However, it has been also reported that microRNAs can promote translation of a mRNA by
binding to its 5′ untranslated region (5′ UTR) as one can verify in [98].
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Figure 1.5: This cartoon has been taken from [102]. Here, one sees a "directed graph"
in which the "nodes" represent the concepts. The direction of each "edge" is deter-
mined by the "conception order" which means that the concept C1 is conceptually de-
pendent upon the concepts C2 and C3 and so forth. However, the concepts C2 and C3

are not conceptually related to each other. That means that {C1, C2, C3, C4, C5, C6}
is "partially ordered". Furthermore, the concepts C4, C5 and C6 can be thought as
the most fundamental notions or as the irreducible ones, that is, the primitive ones.
Therefore, at the conceptual level, one might regard gene regulation as a partially-
ordered hierarchical graph.

pre-transcriptional one and post-transcriptional one.
In eukariotic cells, if we want to be a little bit more specific as to post-transcriptio-

nal regulation then we can also tell that a transcribed piece of coding RNA primarily
consists of introns, that is, DNA sequences of a gene not used for translation, and
axons, which, in turn, are defined as DNA sequences of a gene that will be def-
initely used for translation. Thus, the latter concepts of axons and introns give
rise to the notion of a pre-mRNA5, that is, a coding RNA containing introns and
axons. In order to prevent a pre-mRNA from being clove by RNases, which are
ribozymes specialized in catalyzing the degradation of RNAs6, one has that a pre-
mRNA undergoes physico-chemical modifications right after transcription. In fact,
those modifications include the addition7 of a cap tail to its five-prime end

(
5
′
cap
)
,

and the annexation of a poly(A) tail to its three-prime end
(
3
′
poly(A)

)
as shown in

Figure 1.1. In this regard, one has the emergence of the concepts of mRNA capping

5It is fundamental to noting that introns are not necessarily wrong sequences. In fact, introns
and axons in a transcribed sequence, are defined in relation to a specific protein what the respective
gene code for. Actually, an unique gene can encode many proteins as reported in [99, 46].

6Such as RNA viruses.
7For biochemical details see [10].
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Figure 1.6: This cartoon has been taken from [88]. Here, one sees an illustration of
the proofreading process through which RNAP can fluctuate between backtracked and
active state.

and polyadenylation, respectively. Next, that modified mRNA undergoes another
physico-chemical modification through which its introns get extracted by highly
complex macromolecules made of several proteins and RNAs. Those molecules are
known as spliceosomes. So, the latter dwindling process gives rise to the concept
of RNA splicing. In light of that process, a pre-mRNA becomes a mature mRNA,
that is, a messenger RNA ready for translation. In sum, in eukaryotic cells, one has
that a necessary condition for translation to occur is that a pre-mRNA goes through
mRNA capping, polyadenylation and RNA splicing. Therefore, stratification of gene
regulation flows rationally in the direction of the conceptual order. Moreover, one
might also assert that the notion of stratification of gene regulation is actually equiv-
alent to the concept of layers of gene regulation introduced by Dr. Stefan Semrau
in [87].

Likewise, if we appeal to the central dogma to deepen our understanding about
the changes in DNA-conformation caused by TFs then we can assert that gene
regulation can be separated into pre-translational one and post-translational one as
well. Indeed, for instance, how can a target site of DNA become accessible for TFs?
This is actually controlled by epigenetic mechanisms. But, what are epigenetic
mechanisms? Those are mechanisms of gene regulation that cause DNA to change
its conformation without altering DNA-sequence. So far, we have brought up the
notion of DNA-conformation without explaining it sufficiently. So, what do we
mean with DNA-conformation? It is defined as any feasible spatial arrangement
that DNA can have. In order to understand it intuitively, we might build upon the
order of conception priority by invoking the concept of a chromosome, which is a
compact structure carrying DNA. But, how is that compact structure organized?
That consists of a coiled DNA wrapped around histone proteins, which, in turn,
gives rise to the concept of a chromatin. Hence, a chromosome can be defined
as a compacted chromatin as illustrated in Figure 1.3. Therefore, consistently, the
concept of a chromosome is conceptually dependent upon the concept of a chromatin
which, in turn, is conceptually dependent upon the concepts of a DNA and a protein.

As an example of such epigenetic mechanisms, one has histone acetylation and
cytosine methylation. As for the former, it consists of the insertion of an acetyl
group by specific enzymes, that is, Histone Acetyltransferases (HATs), to lysine
aminoacids on histone proteins. Hence, a post-translational protein modification,
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that is, acetylation of histone proteins, cause DNA to uncoil itself which creates
physical accessibility for TFs to bind target operators enabling RNAPs to access
the activator so as to initiate the process of transcription as illustrated in Figure
1.4. As for the latter, it is described as the inclusion of a methyl group to cytosines8

in the DNA sequence, causing DNA to get condensed what abrogates DNA-binding
proteins (TFs) as depicted in Figure 1.4. Moreover, concerning the respective re-
versal mechanisms, one has histone deacetylation and cytosine demethylation. In
fact, histone deacetylation is the removal of an acetyl group from histone proteins
by Histone Deacetylases (HDACs) inducing coiling in DNA while cytosine demethy-
lation is the extraction of a methyl group from cytosines, that is, the removal of a
barrier switching off DNA target sequences9.

If it is true that most of the DNA is useless then it is reasonable to know how
genes are actually distributed in the DNA. As reported in [24], genes are not ran-
domly distributed in the DNA, but they form clusters of genes that are likely to be
coexpressed without having necessarily any functional relation. That means that
genes belonging to the same cluster in the DNA are highly likely to be related to
each other at the transcriptional level but not necessarily at the translational level.
Although it seems to be counter-intuitive that neighboring genes might be func-
tionally unrelated to each other, they argue in [24] that a plausible explanation for
that is based on natural selection, which is the underlying mechanism of evolution.
Indeed, this cluster organizational structure observed in the distribution of genes
in the DNA has been achieved by fine-tuned evolutionary processes so as to reduce
gene expression noise.

But, what was the purpose in reducing gene expression noise? In fact, a high
noise in gene expression can have a negative effect on cell fitness10. In order to give
an argument for that, we might draw upon the molecular morphology of ribosomes
and its important roll in the process of translation. Indeed, as we described ear-
lier, one has that ribosomes are highly complex macromolecules consisting of RNAs
and many different proteins. Besides that, according to [48], the ’total number of
ribosomes’ in a mammalian cell (eukariotic cell) is around 107, which, for example,
amounts11 to 0.00002% of the total volume of an egg cell. So, if one regard the latter
percentage as a significant one then it might be used as a reasonable justification
for an eventual use of the notion of concentration in an argument referring to the
’level of ribosomes in the cell’. If not then one can also use "the total number of
ribosomes" instead. In fact, in no way will the latter choice alter the conclusion of
our argument.

However, as we shall see, even though our argument is not contingent upon
the notion of the ’level of ribosomes in the cell’ being used, it offers a suitable
occasion to bring up the issue of ribosomal heterogeneity in the control of gene
expression. To begin with, also according to [48], the number of ribosomal proteins12,
in each ribosome, amounts to 80. So, it is reasonable to imagine that ribosomes

8Cytosine, adenine, guanine and thymine (uracil) are the four bases found in DNA.
9Or equivalently, DNA coding sequences or DNA functional non-coding sequences.

10A measure of the health state of a cell concerning its ability of reproducing itself.
11This estimation was calculated by the author of this thesis by using that the diameter of an egg

cell is approximately equal to 1.0mm and of an ribosome is around 25nm. Moreover, he has been
also predicated upon the assumption that their volumes might be approximated by the volume of
a sphere.

12In a mammalian cell.
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might be selective in translating mRNAs. In fact, it has been hypothesized that the
translation process does depend on the interactions among mRNAs and ribosomal
RNAs and proteins, or equivalently, cells presumably build specialized ribosomes
for the synthesis of proteins. The later hypothesis is known as the ribosome filter
hypothesis as broadly discussed in [41]. But, is there an evidence for that? Yes,
there is indeed. In [92], it was shown that the variability in the total number of
specific ribosomal proteins in mouse embryonic cells (mESCs) correlates with cell
fitness.

So, an argument for the current question reads as follows. As the ’total number of
ribosomes’ must be maintained stable in the cytoplasm for a normal cellular function
then a low noise in the expression of their respective DNA coding sequences and
DNA non-coding sequences is a favourable condition for cellular growth, division and
proliferation [21], which, in fact, are essential processes for embryogenesis. On the
other hand, another via positiva argument for that, can be given from a mechanical
perspective given that gene expression involves changes in DNA-conformation [60]
caused by the binding and unbinding of TFs, which, in turn, embroils the stress-
strain13 relationship in that. Thereby, a high expression noise could potentially
increase the chance of damage in the DNA structure, causing certain mutations to
occur, that is, alterations in a DNA coding sequence or DNA non-coding sequence.
Those mutations in DNA would presumably lead to severe implications for a normal
cellular function which, in turn, would impair embryonic development.

If the latter arguments are plausible then we should ask ourselves what is fun-
damental to understanding them as a whole? It is irrefutable that knowing the
meaning of the involved concepts is a necessary condition for that. However, we ar-
gue that apprehension of the notions might not be sufficient to know how the above
arguments are interlocked with each other. In fact, the order of conceptual priority
enables us to make such an connection between them seeing that the concept of a
ribosome is conceptually dependent on the concept of a rRNA and on the concept
of a protein which, in turn, are both reducible to the concept of a gene. How can we
connect the above arguments then? In fact, the definition of the concept of a gene
has been given in terms of the notions of DNA coding sequence and DNA non-coding
sequence. The latter concepts have been clarified in terms of transcription, which
entails changes in DNA-conformation, and translation, which involves the binding
of ribosomes to a target mRNA, that is, one cannot understand the respective ar-
guments without invoking the central dogma in which translation and transcription
are crucial notions. Therefore, the conceptual order is essential to putting the latter
arguments into perspective to each other.

Are there non-primitive concepts in gene expression that are non-comparable,
or rather, that are conceptually independent upon one another? Yes, the concept
of a mRNA and the concept of a rRNA are both dependent upon the concept of a
RNA, but their definitions do not refer back to none of them, which is illustrated
in Figure 1.5. So far, we have argued that understanding how possible events in
gene expression are interrelated to each other requires knowledge of the involved
concepts and of their conceptual order in relation to one another. Is knowing the
concepts and their conception order a sufficient condition for us to know events in
gene expression as a whole? No, it is not; and an argument for that relies upon
the fact that the notion of knowledge is a primitive concept. In fact, if knowledge

13Or better, force and deformation.
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is understood as a justified true belief then, intuitively, we cannot conceive of the
idea that knowledge of all events in gene expression as a whole can be logically
deduced at the conceptual level. That can be done if we know all the phenomena
related thereto, that is, if we know all mechanisms involved in gene expression, and
their agents, which, in this case, are supposed to have been properly conceptualized.
Hence, the latter elucidation points us out to the primitiveness of the concept of
knowledge.

Withal, from a mechanistic perspective, we assert that if we know the concepts
and their conception order in relation to one another then we can potentially know
events in gene expression as a whole. Why? Because “actuality precedes potential-
ity” [Actus est prior potentia] as categorically stated by Dr. Martin-Löf in [55]. In
fact, if one claims that "something" is potentially doable then it means that it can
actually be done. But, what do we mean with knowing events in gene expression as
a whole? The answer for this question is implicit in the aforementioned mechanistic
perspective of gene expression, that is, a dynamical system perspective thereof, from
which one has that a behaviour of a system is strictly determined by the interaction
among its parts. So, knowing the conceptual order of its parts can provide access to
the way in which their interaction actually occurs in the system. Therefore, this view
presumably gives us a systematic approach to get information about the underlying
mechanisms in gene expression by solely using analytical thought. Furthermore, it
perhaps offers a rational recipe to model gene expression.

What is essential in this view? Finding the entailment of notions with respect
to a set of events of interest is of utmost importance. This process will unveil
the most fundamental notions and, of course, if feasible, the primitive ones. That
gives a thinking directionality completely determined by the conceptual order. Can
we give an example for that? Yes, we can refer to the birth-death model of gene
expression as described in [90]. In that model, it is essential to knowing that the
notion of transcription precedes translation and that the concepts of protein, mRNA
and promoter are entailed with each other in this respective order with regard to
the conceptual order so that the notion of a promoter is the most fundamental one
in that sequence of concepts. In the next section, we shall see that the aforesaid
mathematical model, to some extent, enables us to understand gene regulation.

1.2 Noise in gene expression as a tool to understand
gene regulation

A striking feature of gene expression, as evidenced in genuine experiments reported
in the literature [107, 6, 9, 17], is that the number of proteins produced by a gene
of interest varies in a isogenic cell population14 and over time within a single cell.
What is the cause of this variability? To give an argument for single-cell variability
over time, we could limit ourselves to a hypothetical event in which the process of
transcription-translation happens instantaneously and mRNA degrades on the same
time scale as the translated proteins which amounts to assuming that they have the
same lifetime15, that is, τmRNA = τprotein.

In [107], see Figure 1.7, the authors developed a technique with which they

14A cell population consisting of cells with the same DNA.
15The lifetime of a protein or mRNA is the average time that it takes to degrade.
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Figure 1.7: Cartoon taken from [107]. So, upon unbinding of repressor, RNAP
initiates transcription with subsequent binding of several ribossomes to mRNA, which
folds into a polypeptide and undergoes localization to the inner cellular membrane and
after maturation of fluorophore, it can be easily detected by a fluorescence microscope.

quantified gene expression of a chimeric gene, i.e. tsr-Venus gene, incorporated in
a E.coli strain SX4 (Bacterium: prokaryotic cell) replacing the lacZ-gene. From
the statistical analysis of their data, they concluded that the lifetime of a tsr-Venus
mRNA is τmRNA = 1.5 ± 0.2 min whereas the lifetime of a tsr-Venus protein is
τprotein = 29 ± 8 min. Does the latter difference of one-order magnitude in lifetime
for a prokaryotic cell suffice to argue the unsoundness of the proposed hypothetical
event with respect to eukaryotic cells? In fact, the logic of biological sciences is
inherently inductive so that the knowledge acquisition process is driven by empirical
extrapolation [50] from a model organism to a target organism. The principles
underlying the inferential rule are either circumstantial evidence or phylogeny-based
generalization, i.e. we either assume that the model and target organisms share
enough relevant causal similarities or we appeal to shared ancestry. Having said
that, arguably, we could say that the proposed hypothetical event is compatible
with the known structural complexity of eukaryotic cells if we start assuming the
existence of highly improbable mechanisms. Therefore, it must be highly unlikely
that the proposed hypothetical event can occur within an eukaryotic cell.

So, under the aforesaid highly improbable hypothetical event, one has that if we
assume that a transcription-translation occurred at time t1 > 0 and that there has
occurred another one at time t2 > τmRNA = τprotein > t1 before cell division16, that
is, τcell > t2 so that one has the same cell, then it is highly improbable that the
same amount of proteins will be produced at time t2. In fact, under randomness
of biochemical reactions, it cannot be the case that mRNA molecules are bound by
the same amount of ribosomes at each mRNA-protein lifetime. So far, this suffices
as an explanation for single-cell variability in gene expression over time.

16In [107], it was reported that the cell cycle of E.coli strain amounts to τcell = 55± 10 min.
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To argue cell-to-cell variability, we can draw on the reasoning provided in [62]
and limit ourselves to a less likely scenario wherein a cell underwent division and pro-
duced two genetically identical daughter cells carrying the same amount of copies of
transcription factors with respect to a gene of interest. In order to promote transla-
tion, those transcription factors must perform a random walk (uncorrelated) toward
the respective operator within each daughter cell causing these cells to have different
levels of expression of the corresponding gene. Therefore, the latter argument serves
the purpose to explain cell-to-cell variability.

Hence, the source of noise generated by this cascade of biochemical reactions from
translation to transcription is said to constitute the intrinsic noise . Moreover, RNA
polymerase is an enzyme, a protein, a gene-product so it also carries noise, which, in
turn, is said to be extrinsic17. In this regard, the total noise has two components:
intrinsic and extrinsic, as detailed in [97, 44].

But, how can we put this variation [fluctuation] in gene expression into perspec-
tive with embryogenesis [embryonic formation]? To answer the latter question, we
quote from Semrau et al. in [87]:

(. . .) Here, we review attempts to understand lineage decision-making as the inter-
play of single-cell heterogeneity and gene regulation. Fluctuations at the single-cell
level are an important driving force behind cell-state transitions and the creation of
cell-type diversity. Gene regulatory networks amplify such fluctuations and define
stable cell types. They also mediate the influence of signaling inputs on the lineage
decision.

Hence, according to Semrau et al., one has that embryonic formation can be seen
as an interplay between single-cell heterogeneity, caused by fluctuations in gene ex-
pression, and gene regulation, which, in turn, heavily augments the corresponding
fluctuations. In fact, we draw upon the latter paradigm so as to suitably give an
answer to the question: what is fundamental so as to go from a unicellular organism
to a multicellular organism? Indeed, one has that randomness in gene expression
underlying the single-cell heterogeneity in a genetically identical cell population to-
gether with a network of regulatory interaction encrypted in the DNA, is essential
for the formation of a multitude of cell types comprising the embryo. Moreover,
understanding randomness in gene expression can shed light on gene regulation
mechanisms.

But, what is the probability distribution of the number of protein molecules per
cell in the cell population ? To answer this question, we refer to an article published
by Dr. V. Shahrezaei and Dr. P. Swain in 2008 (see [90]). In fact, grounded in the
results of single-cell experiments, including [107] and [6], the authors applied the time
scale separation technique18 to the stochastic counterpart of the birth-death model
for gene expression which enabled them to arrive at an expression for the probability
distribution of the number of protein molecules per cell in the cell population.

So, in the two stage model, as shown in Figure 1.9(A), the promoter is assumed
to be always in the active state. Drawing upon the inherent Markov process in

17Not only the respective RNAP carries extrinsic noise but all the cellular components which
interact with the stochastic system comprising the regulation of a gene of interest, and that are
not directly involved into the transcription and translation thereof.

18The reduction of the dimension of a dynamical system based on differences in time scales.
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Pm−1,n Pm,n Pm+1,n

ν0 ν0

d0(m+ 1)d0m

Pm,n−1 Pm,n Pm,n+1

ν1m ν1m

d1(n+ 1)d1n

Figure 1.8: The Markov chain showing the transition probabilities regarding the two
stage model.

this model, displayed in Figure 1.8, leads us to the birth-death master equation
describing the evolution of the probability distribution of havingm mRNA molecules
and n protein molecules at time t

dPm,n
dt

= ν0(Pm−1,n − Pm,n) + ν1m(Pm,n−1 − Pm,n)

+ d0[(m+ 1)Pm+1,n −mPm,n]

+ d1[(n+ 1)Pm,n+1 − nPm,n],

(1.1)

for m,n ≥ 1, with ν0 and ν1 being the probability per unit time of transcription and
translation respectively, whereas d0 and d1 denote the probability per unit time of
mRNA and protein degradation. The same equation holds for all m,n ≥ 0, if we
take the convention that

Pm′,n′ ≡ 0, (1.2)

if m′ < 0 or n′ < 0.
Next, by introducing the generating function

F (z
′
, z) =

∑
m,n

z
′mznPm,n, (1.3)

with Pm,n representing the joint probability mass distribution of the number of
mRNAs and proteins in the cell, one reduces the infinity system (1.1) of coupled
ordinary differential equations to a single dimensionless partial differential equation

∂F

∂ν
− γ

[
b(1 + u)− u

ν

] ∂F
∂u

+
1

ν

∂F

∂τ
= a

u

ν
F, (1.4)

wherein
a = ν0/d1, b = ν1/d0, , (1.5)

and with
γ = d0/d1 (1.6)

being the parameter carrying the difference in time scale. Next, one has that

τ = d1t (1.7)

is the time in protein life time, while

u = z
′ − 1 (1.8)

and
ν = z − 1 (1.9)
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are thought to be the variables carrying the dynamics of mRNA and protein molecules
respectively. Here, one must notice that the parameters of interest naturally emerges
from the model with the intended meaning, i.e., a and b, or rather, the burst fre-
quency and the burst size.

But, how can we derive the equation (1.4)? In fact, if we multiply the left-hand
side and right-hand side of the equation (1.1) by z′mzn, and if we sum it in m and
n, then we arrive at

∂

∂t

+∞∑
m,n=0

z
′mznPm,n = ν0

+∞∑
m,n=0

z
′mzn(Pm−1,n − Pm,n) + ν1

+∞∑
m,n=0

mz
′mzn(Pm,n−1 − Pm,n)

+ d0

+∞∑
m,n=0

z
′mzn[(m+ 1)Pm+1,n −mPm,n]

+ d1

+∞∑
m,n=0

z
′mzn[(n+ 1)Pm,n+1 − nPm,n].

(1.10)

Next, if we now draw upon the definitions (1.3), (1.7) then one has that the term
on the left-hand side of equation (1.10) reads

∂

∂t

+∞∑
m,n=0

z
′mznPm,n =

∂F

∂τ
d1, (1.11)

and if we also build on definitions (1.8) then one has that the first term on the
right-hand side of equation (1.10) reads

ν0

+∞∑
m,n=0

z
′mzn(Pm−1,n − Pm,n) = ν0

(
z
′

+∞∑
m=−1,n=0

z
′mznPm,n −

+∞∑
m=−1,n=0

z
′mznPm,n)

)
.

(1.12)
So, if we bear in mind that Pm=−1,n = 0 for all n ∈ N then one has that

ν0

+∞∑
m,n=0

z
′mzn(Pm−1,n − Pm,n) = ν0(z

′ − 1)
+∞∑
m,n=0

z
′mznPm,n = ν0uF. (1.13)

Now, if we use (1.9) and that Pm,n=−1 = 0 for all m ∈ N, then one has that the
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second term on the right-hand side of equation (1.10) reads

ν1

+∞∑
m,n=0

mz
′mzn(Pm,n−1 − Pm,n) = ν1

(
z

+∞∑
m=0,n=−1

mz
′mznPm,n −

+∞∑
m,n=0

mz
′mznPm,n)

)

= ν1(z − 1)
+∞∑
m,n=0

mz
′mznPm,n

= ν1(z − 1)z
′

+∞∑
m,n=0

mz
′m−1znPm,n

= ν1ν(1 + u)
+∞∑
m,n=0

mz
′m−1znPm,n

= ν1ν(1 + u)
∂F

∂u
,

wherein the last equality is derived from the fact that

∂F

∂u
=

+∞∑
m,n=0

mz
′m−1znPm,n, (1.14)

so we have that

ν1

+∞∑
m,n=0

mz
′mzn(Pm,n−1 − Pm,n) = ν1ν(1 + u)

∂F

∂u
. (1.15)

Now, one has that the third term on the right-hand side of equation (1.10) can
be written as

d0

+∞∑
m,n=0

z
′mzn[(m+ 1)Pm+1,n −mPm,n] = d0

+∞∑
m=1,n=0

mz
′m−1znPm,n

−d0

+∞∑
m,n=0

mz
′mznPm,n

= d0

+∞∑
m=1,n=0

mz
′m−1znPm,n

−d0z
′

+∞∑
m=1,n=0

mz
′m−1znPm,n

= d0(1− z′)
+∞∑

m=1,n=0

mz
′m−1znPm,n

= −d0u
∂F

∂u
,

so we have that

d0

+∞∑
m,n=0

z
′mzn[(m+ 1)Pm+1,n −mPm,n] = −d0u

∂F

∂u
. (1.16)
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Further, if we build on the same aforementioned argument and on the equality

∂F

∂ν
=

+∞∑
m=0,n=1

nz
′mzn−1Pm,n, (1.17)

then one has that the fourth and last term on the right-hand side of equation (1.10)
reads as

d1

+∞∑
m,n=0

z
′mzn[(n+ 1)Pm,n+1 − nPm,n] = d1

+∞∑
m,n=0

(n+ 1)z
′mznPm,n+1

−d1

+∞∑
m,n=0

nz
′mznPm,n

= d1

(
+∞∑

m=0,n=1

nz
′mzn−1Pm,n − z

+∞∑
m=0,n=1

nz
′mzn−1Pm,n

)

= d1(1− z)
+∞∑

m=0,n=1

nz
′mzn−1Pm,n

= −d1ν
+∞∑

m=0,n=1

nz
′mzn−1Pm,n

= −d1ν
∂F

∂ν
,

so we have that

d1

+∞∑
m,n=0

z
′mzn[(n+ 1)Pm,n+1 − nPm,n] = −d1ν

∂F

∂ν
. (1.18)

Therefore, if we multiply the terms (1.11), (1.13), (1.15), (1.16), and (1.18) by 1
d1ν

,
then we arrive at equation (1.4).

But, how can we solve (1.4)? To answer this question, we will rewrite (1.4) in a
convenient way. In fact, if we multiply the left-hand side and the right-hand side of
(1.4) by ν, then we arrive at

∂F

∂τ
+ ν

∂F

∂ν
− γ [bν(1 + u)− u]

∂F

∂u
= auF. (1.19)

Now, if we define the scalar function

r(u, ν) = au+ 1− γ(bν − 1), (1.20)

and the vector-field
V(u, ν) = (V1(u, ν), V2(u, ν)) , (1.21)

with
V1(u, ν) = −γ [bν(1 + u)− u] (1.22)

and
V2(u, ν) = ν, (1.23)
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Figure 1.9: A) The cartoon and the plots have been taken from [90]. Two stage model
with the promoter being always active. B) A simulation comparing the analytical
solution of the two stage model and the numerical simulation of the master equation
by using the Gillespie algorithm. Here, we see that the higher is γ, the better is the
fitting. Moreover, for a > 1, one has that the distribution is peaked at a positive
number. C) Here, for γ = 10, one sees a "perfect match". Moreover, as a < 1,
with a high b = 100, ones sees that it is peaked at 0. D) Here, the Kullback–Leibler
divergence quantifies the effects of small γ. As we see, for γ around 10, one has a
perfect match, whereas for γ < 1, one sees a high divergence. This high divergence
is due to the fact that, in this case, proteins are being degraded while being produced
during the lifetime of a mRNA, so the probability distribution describing the number
of proteins per mRNA cannot be geometrically distributed which, in turn, implies
that the probability distribution of the number of proteins in the cell cannot be the
negative binomial what is reflected in this high divergence effects for lower γ.

then one has that (1.19) can be rewritten as

∂F

∂τ
+∇ · (FV) = r(u, ν)F, (1.24)

in which
∇ · (FV) = ∇F ·V + F∇ ·V (1.25)

with
∇F =

(
∂F

∂u
,
∂F

∂ν

)
(1.26)

and
∇ ·V =

∂V1

∂u
+
∂V2

∂ν
. (1.27)

Hence, one has that the equation (1.19) is indeed a transport equation in non-
conservative form, while its conservative form is shown in (1.24).
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Figure 1.10: A)The cartoon and the plots have been taken from [90]. The three stage
model including the transition of promoter between active and inactive states. B)
and C) Similar results (unimodal behavior) for slightly high transition rates. D)Here,
for small transition rates, one sees bimodality.

Further, drawing upon the method of characteristics presented in [18, p. 97–115],
one can rewrite (1.19) as

(
∂F

∂u
,
∂F

∂ν
,
∂F

∂τ
,−1

)
−γ[bν(1 + u)− u]

ν

1

auF

 = 0 (1.28)

and one has that the vector field(
∂F

∂u
,
∂F

∂ν
,
∂F

∂τ
,−1

)
(1.29)

is normal to the surface solution F = F (u, ν, τ) ∈ R4 of (1.19). So, one can deduce
that the vector field

(−γ[bν(1 + u)− u], ν, 1, auF ) (1.30)

is tangent to the surface solution F = F (u, ν, τ) ∈ R4 of (1.19) at each point
(u, ν, τ, F (u, ν, τ)) for which (1.28) holds. So, intuitively, one can think about form-
ing a curve on the surface solution for which the vector field in (1.30) coincides with
tangent vector of the respective curve. But, How can we find such a curve? In fact,
one can find such a curve by solving the following system of ordinary differential
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equations 

dτ
ds

= 1;

dν
ds

= ν;

du
ds

= −γ[bν(1 + u)− u];

dF
ds

= auF ;

(1.31)

in which s denotes a parametrization by the arc length. Thus, one has that the
union of all such curves [characteristics, integral curves] satisfying (1.31) amounts
to the surface solution of (1.19). Thereby, τ = s, which, in turn, implies that one
can rewrite (1.31) as 

dν
dτ

= ν;

du
dν

= −γ[b(1 + u)− u
ν
];

dF
dτ

= auF.

(1.32)

But, how can we solve (1.32) under γ � 1 ? In fact, one has that

e
∫
γ(b− 1

ν )dν =
eγbν

νγ
(1.33)

is the integrating factor of the differential equation (1.32)2. Thus, if we multiply the
left-hand side and the right-hand side of (1.32)2 by the term (1.33) then we arrive
at ∫ (

eγbν
1

νγ
u

)′
dν = −γb

∫
eγbν

′

ν ′γ
dν ′, (1.34)

which, in turn, implies that

u(ν) = e−γbννγ

(
R− γb

∫
eγbν

′

ν ′γ
dν
′

)
(1.35)

with R ∈ R being a constant. Drawing upon [90], one can use the identity

eγbν =
+∞∑
n=0

(γbν)n

n!
, (1.36)

in the integral on the right-hand side of (1.35) so as to arrive at
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u(ν) = e−γbννγ

(
R− γb

∫
eγbν

′

ν ′γ
dν
′

)

= e−γbννγ

R− γb ∫
+∞∑
n=0

(γbν′)n

n!

ν ′γ
dν ′


= e−γbννγ

(
R− γb

+∞∑
n=0

(γb)n

n!

∫
ν
′n−γdν ′

)

= e−γbννγ

(
R− γb

+∞∑
n=0

(γb)n

n!

νn−γ+1

n− γ + 1

)

= e−γbν

(
νγR− νγ

+∞∑
n=0

(γbν)n+1

n!

ν−γ

n− γ + 1

)

= e−γbν

(
νγR−

+∞∑
n=0

(γbν)n+1

n!(n− γ + 1)

)
.

(1.37)

But, how to take care of the sum

+∞∑
n=0

(γbν)n+1

n!(n− γ + 1)
? (1.38)

In fact, if one denotes the n-th term of the series (1.38) by

An :=
(γbν)n+1

n!(n− γ + 1)
(1.39)

then, under the assumption that γ � 1, one has that

An−1

An
=

(
n− γ + 1

n− γ

)
n

γbν

≈ n

γbν

(1.40)

and one concludes that the sum in (1.38) is dominated by A′ns with n close to γbν.
So, if one applies the following change of variables

s = n− γbν (1.41)

and if one uses the Stirling’s approximation

n! ≈
√

2πne−nnn (1.42)

then, according to the authors of [90], one can show that

n! ≈ (γbν)ne−γbνe
(n−γbν)2

2γbν

√
2πγbν, (1.43)
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or better,

n! ≈ (γbν)ne−γbνe
s2

2γbν

√
2πγbν. (1.44)

Hence, drawing upon the approximation (1.44), one can evaluate the sum in (1.38)
as an integral in s, from −∞ to +∞, seeing that, under the assumption that γ � 1,
the respective integral is supposed to be dominated by terms |s| ≈ 0, or equivalently,
the sum in (1.38), under the assumption that γ � 1, is dominated by n-th terms
with n ≈ γbν . In fact, if one uses that

∫ +∞

−∞

e
s2

2γbν

√
2πγbν

ds = 1 (1.45)

then

+∞∑
n=0

(γbν)n+1

n!(n− γ + 1)
≈
∫ +∞

−∞

e
s2

2γbν

√
2πγbν

[
γbνeγbν

γ(bν − 1) + s+ 1

]
ds

=

∫ +∞

−∞

e
s2

2γbν

√
2πγbν

bνeγbν

(bν − 1)

[
1 + γ−1

(
s+ 1

bν − 1

)]−1

ds

=

∫ +∞

−∞

e
s2

2γbν

√
2πγbν

bνeγbν

(bν − 1)

{
1 +

+∞∑
i=1

(−1)i
[
γ−1

(
s+ 1

bν − 1

)]i}
ds

=
bνeγbν

(bν − 1)

∫ +∞

−∞

e
s2

2γbν

√
2πγbν

ds+
bνeγbν

(bν − 1)

∫ +∞

−∞

e
s2

2γbν

√
2πγbν

+∞∑
i=1

(−1)i
[
γ−1

(
s+ 1

bν − 1

)]i
ds

=
bνeγbν

(bν − 1)
+O

(
γ−1
)

≈ bνeγbν

(bν − 1)
,

(1.46)

or better,
+∞∑
n=0

(γbν)n+1

n!(n− γ + 1)
≈ bνeγbν

(bν − 1)
(1.47)

which, in turn, by invoking (1.35), implies that

u(ν) ≈ Re−γbννγ +
bν

(1− bν)
. (1.48)

So, if one focuses upon a integral curve [characteristic] with initial conditions

ν(τ = 0) = ν0, (1.49)

and
u(τ = 0) = u0, (1.50)

which, in turn, consistently, implies that

u(ν0) = u0, (1.51)
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then one has that

R =

(
u0 −

bν0

1− bν0

)
eγbν0

νγ0
. (1.52)

Thus, if one uses (1.52) in (1.48) then one arrives at

u(ν) ≈
(
u0 −

bν0

1− bν0

)
e−γb(ν−ν0)

(
ν

ν0

)γ
+

bν

1− bν
. (1.53)

Therefore, drawing on the method of characteristics, one reduces the problem
of finding a solution for the transport-equation in non-conservative form, shown in
(1.19), to a problem of finding a solution for the system of ordinary differential
equations (1.31). Thereby, under19 γ � 1, or rather, that the protein lifetime 1/d1

is much longer than the mRNA lifetime 1/d0, one can capitalize upon

lim
γ→+∞

e−γb(ν−ν0)

(
ν

ν0

)γ
= 0

to conclude that
u(ν) ≈ bν

1− bν
, (1.54)

and that
ν = ν0e

τ . (1.55)

Furthermore, we do have a situation amenable to the quasi steady-state approx-
imation. In fact, for the most part of a protein lifetime, under γ � 1, one has that
the variable u carrying the dynamics of mRNA molecules is at steady state, so u(ν)
is given by (1.54) and the mRNA probability mass distribution is at steady state
and peaked around zero, which, in fact, under γ � 1, implies that

P0,n ≈ Pn, (1.56)

and that
Pm,n � 1, (1.57)

for all m ∈ N\{0} and n ∈ N, which, in turn, implies that (1.3), under γ � 1, reads

F (z, τ) =
+∞∑
n=0

Pn(τ)zn. (1.58)

Next, if one "eliminates" the fast variable u from (1.32)3 and using (1.32)1, then
one arrives at the ordinary differential equation

dF

dν
≈ ab

1− bν
F. (1.59)

with the expression for F , under γ � 1, being approximated by (1.58). Thereby,
by invoking the initial conditions (1.49), (1.50) and (1.51), if we draw upon the
argument given in [90] then we suppose that there are initially n0 ∈ N proteins.
Hence, under the latter assumption, one has that

19This assumption is consistent with empirical evidences. In fact, as we mentioned earlier in this
essay, tsr-Venus mRNA lifetime was estimated to be ≈ 1.5 min while a protein lifetime in E.coli
is ≈ 30 min.
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Pn(τ = 0) = 0, (1.60)

for all n ∈ N \ {n0}, and that

Pn0(τ = 0) = 1. (1.61)

So, relying upon (1.60) and (1.61), if we recall (1.9) then one can evaluate (1.58) at
ν0 so as to arrive at

F (ν0) = F (z = ν0 + 1, τ = 0) =
+∞∑
n=0

Pn(τ = 0)zn

= Pn0(τ = 0)(1 + ν0)n0 +
∑

n∈N\{n0}

Pn(τ = 0)(1 + ν0)n

= (1 + ν0)n0 ,

(1.62)

and one has that
F (ν0) = (1 + ν0)n0 . (1.63)

Next, if we integrate (1.59) then we have that

F (ν)∫
F (ν0)

1

F
dF =

ν∫
ν0

ab

1− bν ′
dν ′ = a

ν∫
ν0

b

1− bν ′
dν ′, (1.64)

which implies that

ln

(
F (ν)

F (ν0)

)
= −a ln

(
1− bν
1− bν0

)
, (1.65)

which, in turn, implies that

ln

(
F (ν)

F (ν0)

)
= ln

(
1− bν0

1− bν

)a
. (1.66)

Now, from the equality (1.66), one concludes that

F (ν) = F (ν0)

(
1− bν0

1− bν

)a
, (1.67)

and if draw upon (1.9), (1.55) and (1.63), then we arrive at

F (z, τ) =
[
1 + (z − 1)e−τ

]n0

[
1− b(z − 1)e−τ

1 + b− bz

]a
, (1.68)

which, in turn, taking n0 = 0, implies that

F (z, τ) =

[
1− b(z − 1)e−τ

1 + b− bz

]a
. (1.69)

Further, we will build on the formulation provided in [34] to introduce necessary
definitions and provide some results concerning the concept of hypergeometric func-
tion. The latter notion is essential to deriving the expression for Pn(τ) as shown in
[90].
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Definition 1.2.1. For ã ∈ R and n ∈ N, one has that

(ã)n = ã(ã+ 1)(ã+ 2) . . . (ã+ n− 1) (1.70)

represents the Pochhammer symbol with

(ã)0 = 1. (1.71)

Definition 1.2.2. Let p, q ∈ N, a1, . . . , ap ∈ R, and b1, . . . , bq ∈ R \ Z≤ wherein
Z≤ := {n ∈ Z : n ≤ 0}. A hypergeometric function pFq (a1; a2; . . . ; ap; b1; b2; . . . ; bq;w)
is defined as

pFq

(
a1; a2; . . . ; ap

b1; b2; . . . ; bq
;w

)
=

+∞∑
n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

wn

n!
. (1.72)

However, in this thesis, it suffices to consider the special case

2F1

(
ã, b̃

c̃
;w

)
=

+∞∑
n=0

(ã)n(b̃)n
(c̃)n

wn

n!
, (1.73)

with ã, b̃ ∈ R, and c̃ ∈ R \ Z≤ for all n ∈ N. The latter is known as the concept of
Gauss hypergeometric function.

Further, if we apply the ratio test to the series in (1.73) then we have that

lim
n→+∞

|cn+1|
|cn|

= |w|, (1.74)

with

cn =
(ã)n(b̃)n

(c̃)n

wn

n!
(1.75)

for all n ∈ N. Hence, from (1.75), one has that (1.73) converges on |w| < 1.
Moreover, by Raabe’s test (see [34, p. 94]), one has that if Re(c − a − b) > 0 then
(1.73) converges on |w| = 1.

Lemma 1.2.1. If ã = −N , with N ∈ N, then

2F1

(
ã, b̃

c̃
;w

)
=

N∑
n=0

(−N)n(b̃)n
(c̃)n

wn

n!
. (1.76)

Proof. In fact, one has that

(ã)n = (−N)n = (−N)(−N+1)(−N+2)(−N+3) . . . (−N+n−2)(−N+n−1) = 0
(1.77)

for n ∈ N \ {0, 1, 2, 3, . . . , N}, which, in turn, implies that

2F1

(
ã, b̃

c̃
;w

)
=

+∞∑
n=0

(ã)n(b̃)n
(c̃)n

wn

n!

=
N∑
n=0

(−N)n(b̃)n
(c̃)n

wn

n!
,

(1.78)

and the proof is complete.
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Remark. As we have shown in Lemma 1.2.1, if ã is a negative integer then one has
that (1.73) converges for all w ∈ R.

By construction, under the assumption γ � 1, one has that the generating
function in (1.3) can be written as (1.58), which, in turn, implies that

Pn(τ) =
1

n!

∂nF

∂zn

∣∣∣∣∣
z=0

, (1.79)

for all n ∈ N and τ ≥ 0. To proceed with the derivation of the expression of Pn(τ),
one must draw upon the solution (1.69) for the ordinary differential equation in
(1.59). Conveniently, one can write the solution under γ � 1 shown in (1.69) as

F (z, τ) =

(
1 + be−τ

1 + b

)a [1− b
(1+b)

z
]−a

[
1− b

(eτ+b)
z
]−a . (1.80)

Further, if we define

w1(z) :=

[
1− b

1 + b
z

]−a
(1.81)

and

w2(z) :=

[
1− b

eτ + b
z

]−a
(1.82)

then, drawing on [91, 72], one has that

∂n

∂zn
[1− tz]−a

∣∣∣∣∣
z=0

=
Γ(a+ n)

Γ(a)
tn (1.83)

with t ∈ R, from which one can derive that

∂n−k

∂zn−k
w1(z)

∣∣∣∣∣
z=0

=
Γ(a+ n− k)

Γ(a)

(
b

1 + b

)n−k
, (1.84)

and that
∂k̃

∂zk̃
(w2(z))j

∣∣∣∣∣
z=0

=
Γ(aj + k̃)

Γ(aj)

(
b

eτ + b

)k̃
, (1.85)

for all n, j, k̃ ∈ N and k ∈ {0, 1, 2, 3, . . . , n}, with

Γ(s) =

+∞∫
0

xs−1e−xdx (1.86)

for all s ∈ R \ Z≤. In fact, the integral in (1.86) does not converge for s < 0 so,
in this case, Γ(s) is obtained by analytic continuation. Moreover, by definition, one
has that

Γ(n) = (n− 1)! (1.87)

for all n ∈ N \ {0}. Now, before we proceed with the derivation of Pn(τ), it is
convenient that we show the following identities.
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Lemma 1.2.2. If a > 0 and k ∈ N \ {0} then one has that

(a)k =
Γ(a+ k)

Γ(a)
. (1.88)

Proof. In fact, by induction on k, if one uses definition (1.86) then, for k = 1, one
has that

Γ(a+ 1)

Γ(a)
=

+∞∫
0

yae−ydy

+∞∫
0

xa−1e−xdx

=

(−yae−y)

∣∣∣∣∣
+∞

0

+a
+∞∫
0

ya−1e−ydy

+∞∫
0

xa−1e−xdx

= a,

(1.89)

so the identity (1.88) is true for k = 1. Next, suppose that (1.88) is true for k, with
k ∈ N \ {1} then one has that

(a)k =
Γ(a+ k)

Γ(a)
, (1.90)

and if one multiplies both sides of (1.90) by the factor (a + (k + 1) − 1) then one
arrives at

(a)k+1 =
Γ(a+ k)

Γ(a)
· (a+ k)

=
Γ((a+ k) + 1)

Γ(a+ k)
,

(1.91)

in which one capitalizes on the equality

(a+ k) =
Γ((a+ k) + 1)

Γ(a+ k)
, (1.92)

and the identity (1.88) has been shown.

Corollary 1.2.3. If a > 0 and k ∈ N \ {0} then one has that

Γ(a+ 1) = (−1)k(−a)kΓ(a− k + 1). (1.93)

Proof. The proof will be by induction on k. In fact, if one draws upon Lemma 1.2.2
then, for k = 1, one has that

Γ(a+ 1) = (−1)1(−a)1Γ(a− 1 + 1)

= aΓ(a)
(1.94)

is true. Now, suppose that (1.93) is true for k ∈ N \ {1}. So, if we multiply both
sides of (1.93) by the term (−a+ (k + 1)− 1) then we arrive at

Γ(a+ 1)(−a+ (k + 1)− 1) = (−1)k(−a)k(−a+ (k + 1)− 1)Γ(a− k + 1)

= (−1)k(−a)k+1Γ(a− k + 1),
(1.95)
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which, in turn, by recalling Lemma 1.2.2, implies that

Γ(a+ 1) = (−1)k+1(−a)k+1
Γ(a− k + 1)

(a− (k + 1) + 1)

= (−1)k+1(−a)k+1
Γ((a− (k + 1) + 1) + 1)

(a− (k + 1) + 1)

= (−1)k+1(−a)k+1Γ(a− (k + 1) + 1),

(1.96)

with
Γ(a− (k + 1) + 1) =

Γ((a− (k + 1) + 1) + 1)

(a− (k + 1) + 1)
. (1.97)

Therefore, one has that the identity (1.93) has been shown.

In addition to the latter identities, the authors of [90] assert that the following
identity can be verified:

k∑
j=1

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!
=

(−1)kΓ(a+ 1)

Γ(a− k + 1)(k + 1)!
, (1.98)

with a > 0 and k ∈ N \ {0} such that a−k ∈ R \Z<. But, can we give an argument
for that ? In fact, if we draw upon (1.91) and (1.93) then we can rewrite (1.98) as

k∑
j=1

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!
=

k∑
j=1

(−1)j(aj)k
(j + 1)!(k − j)!

=
k∑
j=1

(−1)j
(aj)k

(j + 1)!(k − j)!

=
k∑
j=1

(−1)j
Γ(a+ 1)

Γ(a+ 1)

(aj)k
(j + 1)!(k − j)!

=
k∑
j=1

(−1)j
Γ(a+ 1)

(−1)k(−a)kΓ(a− k + 1)

(aj)k
(j + 1)!(k − j)!

=
k∑
j=1

(−1)j
(−1)kΓ(a+ 1)× (k + 1)!

(−1)k(−1)k(−a)kΓ(a− k + 1)× (k + 1)!

(aj)k
(j + 1)!(k − j)!

=
(−1)kΓ(a+ 1)

Γ(a− k + 1)(k + 1)!

k∑
j=1

(−1)j
(k + 1)!

(j + 1)!(k − j)!
(aj)k
(−a)k

,

(1.99)

so the identity (1.98) is true if and only it is true that

k∑
j=1

(−1)j
(k + 1)!

(j + 1)!(k − j)!
(aj)k
(−a)k

= 1. (1.100)

Thus, one might try to verify (1.100) instead of directly proving (1.98). As this is not
our main aim in this thesis, then we go further with the derivation of the expression
of the probability distribution of the number of proteins in the cell. However, as we
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shall see later, the identity (1.98) is an essential proof step in the derivation process,
which demands that one must be entirely convinced of its truth so as to go on with
that.

Having done that, if we now use (1.81) and (1.82) in (1.80), then we have that

F (z, τ) =

(
1 + be−τ

1 + b

)a
w1(z)

w2(z)
, (1.101)

which, in turn, by invoking (1.79), implies that

Pn(τ) =

(
1 + be−τ

1 + b

)a
1

n!

∂n

∂zn

(
w1

w2

) ∣∣∣∣∣
z=0

. (1.102)

So, as we see in (1.102), it is necessary that one works out the n-th derivative of the
quotient w1(z)

w2(z)
so as to deduce an expression for Pn(τ). In fact, as argued in [90], if

one builds upon [72, 106, 26, 91] then one has that

∂n

∂zn
w1(z)

w2(z)
= n!

n∑
k=0

∂n−k

∂zn−k
w1(z) ·

k∑
j=0

(−1)j(k + 1) (w2(z))−j−1

(j + 1)!(n− k)!(k − j)!
∂k

∂zk
(w2(z))j ,

(1.103)
which, in turn, by invoking (1.82), (1.84), and (1.85), implies that

∂n

∂zn

(
w1(z)

w2(z)

) ∣∣∣∣∣
z=0

= n!
n∑
k=0

Γ(a+ n− k)

Γ(a)

(
b

1 + b

)n−k
×

k∑
j=0

(−1)j(k + 1)

(j + 1)!(n− k)!(k − j)!
Γ(aj + k)

Γ(aj)

(
b

eτ + b

)k
= n!

n∑
k=0

Γ(a+ n− k)

Γ(a)

(
b

1 + b

)n−k (
b

eτ + b

)k
(k + 1)

(n− k)!

×
k∑
j=0

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!
.

(1.104)

Next, if one draws upon Definition 1.2.1 and Lemma 1.2.2 then one concludes
that

lim
ε→0+

Γ(aε+ k)

Γ(aε)
= 0, (1.105)

which, in turn, by invoking (1.87) and the identity 1.98, implies that (1.104)2 can
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be worked out as

∂n

∂zn

(
w1(z)

w2(z)

) ∣∣∣∣∣
z=0

= n!
n∑
k=0

Γ(a+ n− k)

Γ(a)

(
b

1 + b

)n−k (
b

eτ + b

)k
(k + 1)

(n− k)!

×
k∑
j=1

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!

= n!
n∑
k=0

Γ(a+ n− k)

Γ(a)

(
b

1 + b

)n−k (
b

eτ + b

)k
(k + 1)

(n− k)!

× (−1)kΓ(a+ 1)

Γ(a− k + 1)(k + 1)!

= n!

(
b

1 + b

)n n∑
k=0

(−1)k(k + 1)k!

k!(k + 1)!

(
1 + b

b

)k (
b

eτ + b

)k
× 1

((n− k + 1)− 1)!

Γ(a+ n− k)

Γ(a− k + 1)

Γ(a+ 1)

Γ(a)

= n!

(
b

1 + b

)n n∑
k=0

(−1)k

k!

Γ(a− k + n)

Γ(n− k + 1)Γ(a− k + 1)

Γ(a+ 1)

Γ(a)

(
1 + b

eτ + b

)k
.

(1.106)

Further, if we invoke Definition 1.2.1 and the identity (1.87) then we can deduce
that

n!

Γ(n− k + 1)
=
n(n− 1)(n− 2) . . . (n− k + 1)(n− k)!

((n− k + 1)− 1)!

= n(n− 1)(n− 2) . . . (n− k + 1)

= (−1)k(−n)k.

(1.107)

Moreover, if we build upon Lemma 1.2.3 then we can also deduce that

Γ((a+ n− 1) + 1) = (−1)k(−a− n+ 1)kΓ((a+ n− 1)− k + 1)

= (−1)k(−a− n+ 1)kΓ(a+ n− k),
(1.108)

which, in turn, implies that

Γ(a+ n− k) =
Γ(a+ n)

(−1)k(−a− n+ 1)k
. (1.109)

Hence, if we now draw upon Corollary 1.2.3, and the latter identities, that is,
(1.107) and (1.109), then we can rewrite (1.106)4 as
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∂n

∂zn

(
w1(z)

w2(z)

) ∣∣∣∣∣
z=0

= n!

(
b

1 + b

)n n∑
k=0

(−1)k

k!

Γ(a− k + n)

Γ(n− k + 1)Γ(a− k + 1)

Γ(a+ 1)

Γ(a)

×
(

1 + b

eτ + b

)k
= n!

(
b

1 + b

)n n∑
k=0

(−1)k

k!

Γ(a− k + n)

Γ(n− k + 1)Γ(a− k + 1)

(−1)k(−a)kΓ(a− k + 1)

Γ(a)

×
(

1 + b

eτ + b

)k
= n!

(
b

1 + b

)n
1

Γ(a)

n∑
k=0

1

Γ(n− k + 1)
(−a)kΓ(a− k + n)

1

k!

(
1 + b

eτ + b

)k
=

(
b

1 + b

)n
1

Γ(a)

n∑
k=0

n!

Γ(n− k + 1)
(−a)k

Γ(a+ n)

(−1)k(−a− n+ 1)k

1

k!

(
1 + b

eτ + b

)k
=

(
b

1 + b

)n
Γ(a+ n)

Γ(a)

n∑
k=0

(−1)k(−n)k(−a)k
1

(−1)k(−a− n+ 1)k

1

k!

(
1 + b

eτ + b

)k
=

(
b

1 + b

)n
Γ(a+ n)

Γ(a)

n∑
k=0

(−n)k(−a)k
(−a− n+ 1)k

1

k!

(
1 + b

eτ + b

)k
.

(1.110)

So, bearing in mind that
1

n!
=

1

Γ(n+ 1)
, (1.111)

if one uses (1.110)6 in (1.102) then one gets

Pn(τ) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n(
1 + be−τ

1 + b

)a
× 2F1

(
−n, −a

1− a− n
;

1 + b

eτ + b

)
,

(1.112)
which describes the approximate temporal evolution of the probability distribution
of proteins in the cell on protein time scale. The authors in [90, p. 17257] claim that
the mean with the mean equal to ab(1− e−τ ). Moreover, by drawing on Definition
1.2.2 and Lemma 1.73, one has that

2F1

(
−n, −a

1− a− n
;w

)
=

n∑
k=0

(−n)k(−a)k
(−a− n+ 1)k

wk

k!
(1.113)

is indeed a Gauss hypergeometric function defined, in particular, on R. Further, we
approach the derivation of the steady state distribution of the number of proteins
in the cell. In fact, if it is true that, for τ � 1, one has that(

1 + b

eτ + b

)
≈ 0, (1.114)

and that (
1 + be−τ

1 + b

)a
≈
(

1

1 + b

)a
, (1.115)
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then, by invoking Definition 1.2.1, if one expands the right-hand side of (1.113) at
w =

(
1+b
eτ+b

)
then one concludes that

2F1

(
−n, −a

1− a− n
;

(
1 + b

eτ + b

))
=

n∑
k=0

(−n)k(−a)k
(−a− n+ 1)k

(
1+b
eτ+b

)k
k!

=
(−n)0(−a)0

(−a− n+ 1)0

(
1+b
eτ+b

)0

0!
+

(−n)1(−a)1

(−a− n+ 1)1

(
1+b
eτ+b

)1

1!
+ . . .+

(−n)n(−a)n
(−a− n+ 1)n

(
1+b
eτ+b

)n
n!

= 1 +
(−n)1(−a)1

(−a− n+ 1)1

(
1+b
eτ+b

)1

1!
+ . . .+

(−n)n(−a)n
(−a− n+ 1)n

(
1+b
eτ+b

)n
n!

≈ 1,

(1.116)

or better,

2F1

(
−n, −a

1− a− n
;

(
1 + b

eτ + b

))
≈ 1, (1.117)

which, in turn, implies that (1.112) can be rewritten as

Pn(τ) ≈ Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n(
1

1 + b

)a
, (1.118)

for τ � 1, or rather, the steady state distribution Pn indeed reads

Pn =
Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n(
1

1 + b

)a
. (1.119)

Therefore, if a ∈ N \ {0} then (1.119) can be conveniently rewritten as

Pn =
Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n(
1

1 + b

)a
,

=
(n+ a− 1)!

n!(a− 1)!

(
b

1 + b

)n(
1

1 + b

)a
,

=

(
n+ a− 1

n

)(
b

1 + b

)n(
1

1 + b

)a
,

(1.120)

which, indeed, is the negative binomial distribution NB(a, ρ) with ρ = b
1+b

being
thought to be the probability of "success", while 1

1+b
defines the probability of

"failure". This distribution has mean

aρ

1− ρ
= ab (1.121)

as seen in [58, p. 90].
But, what is the definition of the concept of negative binomial distribution ? In

fact, the negative binomial distribution models a stochastic phenomenon in which
one aims to find the probability distribution of the number of "successes" before
a predefined number a of "failures" occur. However, elucidating the later descrip-
tion in relation to gene expression entails apprehending some important notions of
probability theory.
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To begin with, upon the transcription of one mRNA, one has that it can be
bound several times by ribosomes before degrading, so one has an important event
of gene expression which amounts to question of what is the probability distribution
of the number of proteins produced upon transcription of one single mRNA ? To
build a mental model hereof, one can think that mRNA has two states, that is, it
either degrades (inactive state) or it is translated (active state) by a ribosome into
one protein. From this perspective, one has that the notion of Bernoulli distribution
models the aforementioned phenomenon with probability of success [translation]
given by ν1

d0+ν1
, or equivalently, ρ = b

1+b
, and probability of failure amounting to

(1− ρ), that is, 1
1+b

.
Now, suppose that the binding of ribosomes to one single mRNA is independent

upon one another. In this regard, one has that the notion of geometric distribution
suitably models the phenomenon of one mRNA being bound by ribosomes r times,
resulting in the the translation of r proteins before the degradation of the respective
mRNA. More specifically, one has that the probability of one mRNA producing r
proteins before it degrades reads

P proteins
mRNA

(r) =

(
b

1 + b

)r (
1− b

1 + b

)
, (1.122)

so the number of bursts (proteins per MRNA) is geometrically distributed.
Having said that, we can now turn ourselves to the elucidation of the concept

of binomial distribution with respect to gene expression. In fact, more specifically,
protein production could be modelled as a sequence of independent Bernoulli trials in
which two outcomes are possible: mRNA-translation or mRNA-degradation. In this
regard, one could derive the probability of producing n proteins before a failures have
occurred by noting that one can reformulate the later into the question of finding the
probability of having failed translation a−1 times from n+a−1 trials ? Regarding
the reformulated question, one has that the concept of binomial distribution suits
the purpose to answer that , seeing that it models a stochastic phenomenon in which
the number of Bernoulli trials is fixed (n + a− 1). So, according to this reasoning,
one has that

P (W = a− 1) =

(
n+ a− 1

n

)(
b

1 + b

)n(
1

1 + b

)a−1

, (1.123)

wherein the random variable W symbolizes the number of failures within n+ a− 1
trials. Therefore,

Pn = P (W = a− 1)×
(

1

1 + b

)
=

(
n+ a− 1

n

)(
b

1 + b

)n(
1

1 + b

)a
,

(1.124)

which, in turn, might be seen as an "ad hoc argument" to understand (1.118).
Nonetheless, if one wants to fully understand the expression of the temporal evo-
lution of the probability distribution of proteins in the cell on protein time scale
given in (1.113) then one might need to elucidate why the probability of "failure" is
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Figure 1.11: Histograms taken from [107]. A) Here we see that the histogram of
the number of bursts per cell cycle fits a Poisson distribution with average a ≈ 1.2.
B)Here we see that the histogram of the number of proteins per burst event fits a
exponential distribution with average b ≈ 4.2.

proportional to e−τ , that is, (
1 + be−τ

1 + b

)n
, (1.125)

and what the Gauss hypergeometric series in (1.112) can tell us about gene regulation
phenomenon. Concerning the latter point, one can perhaps wonder whether or not
one can make a connection between the Gauss hypergeometric series in (1.112) and
a corresponding concept of a probability distribution.

Now, if we turn ourselves to the publication [107], then we wonder whether
or not it is possible that we could have guessed a negative binomial probability
mass function as the steady state distribution for the number of tsr-Venus proteins
per cell ? In fact, fitting a Poisson distribution for the number of bursts per cell
cycle suggests that the bursts occur randomly in time and are independent of each
other. Moreover, each burst event is geometric distributed with ribosome probability
binding given by ρ = b

1+b
, as show in the Figures 1.11(A) and (B). Therefore, if Xi

and Y denote random variables representing the number of proteins per burst (i) and
the number of proteins per cell, with Xi independently and identically distributed,
then performing a convolution-based reasoning yields

(
n+a−1∧
i=0

Xi ∼ Geom(ρ)

)
∧

(
Y ∼

n+a−1∑
i=0

Xi

)
⇒ Y ∼ NB(a, ρ), (1.126)

what means that the number of tsr-Venus protein molecules per cell in the cell
population is supposed to be negative binomial distributed with parameters a and
ρ. Why is it intuitive? Because a NB-distribution models a stochastic event in which
one is interested in knowing the probability of a particular number of Bernoulli trials
to have a fixed number of successes. Moreover, as the gamma distribution is the
continuous analogue of the NB-distribution then a continuous version of (1.126)
reads
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Figure 1.12: Histogram taken from [6], showing that the number of β-galactosidase
per cell in the cell population fits a gamma distribution with a = 0.16 bursts per cell
cycle and b = 7.8 proteins per burst.

(
n+a−1∧
i=0

Xi ∼ Exp(b)

)
∧

(
Y ∼

a+n−1∑
i=0

Xi

)
⇒ Y ∼ Γ(a, b), (1.127)

with a clearer intuitive explanation. In fact, as the lifetime of a protein in E.coli
cells, here conveniently denoted by 1/d1, is on the time scale of a cell cycle, i.e.
1/d1 ≈ 30 min, then we add a bursts per life cycle with size b, which gives ab for
the total number of proteins during the course of a cell division. However, in the
cell population, we must add a-exponentially distributed bursts with length scale b,
which amounts to a gamma distribution, as seen in Figure 1.12, with mean ab and
variance ab2.

Next, for completeness, we can give an argument for the probability distribution
of the number of tsr-Venus mRNA molecules per cell in the cell population. In
fact, it should be Poisson distributed as we want to know how many translations
have occurred during the trs-Venus mRNA lifetime. In this scenario, if we take
into account that there is degradation then a Poisson distribution is definitely a
strong candidate. Now, we ask ourselves if there is an analytical framework in
which one can derive the expression of the probability distribution for the number
of tsr-Venus protein molecules per cell in the cell population? What about the
probability distribution for the number of tsr-Venus mRNA molecules per cell in the
cell population? From now to the end of this section, we will be entirely concerned
with these questions.

Regarding the simulations, as we see in Figures 1.9 (B) and (C) in [90], the
authors numerically implemented the Gillespie algorithm to the equation (1.1) and
compared with the analytical solution in (1.118). If γ � 1 then the analytical
solution accurately predicts the solution of (1.1). If γ < 1 then the divergence effect
takes over, and the analytical solution provided in (1.118) is a poor approximation
for the solution of (1.1), as seen in Figure 1.9 (D). But, how do they quantify the
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effects of small γ ? In fact, they drew upon the Kullback–Leibler divergence

DKL(P ||P̃ ) =
∑
j

P (j) ln

(
P (j)

P̃ (j)

)
(1.128)

with P , and P̃ representing two probability distributions defined on the same proba-
bility space, see [45]. So, by definition, one has that the Kullback–Leibler divergence
is a measure that quantifies how close two distribution are to each other.

Next, they also considered a more realistic model, the three stage model, as
seen in Figure 1.10 (A), in which the promoter can be active and inactive. By
applying the same technique, they could derive an expression for the probability
distribution of the number of proteins in the cell. More importantly, they showed
in the simulations, as seen in Figure 1.10 (D), that a bimodality may emerge which
is achieved by slow transitions between active and inactive states of the promoter.

But, what can this result tell us about gene regulation mechanisms? In fact, if
we assume that the equation (1.1) is a reasonable representation for gene expression
in prokaryotic organisms then their results states that if γ � 1, i.e., if a protein
lifetime is much greater than a mRNA lifetime then the negative binomial distribu-
tion is an accurate approximation for the simulated distribution of (1.1). On the
other hand, if γ < 1 then the analytic and simulated solution diverge significantly
from each other with higher divergence effects for γ � 1. In fact, γ � 1 implies
that all the proteins produced by a single mRNA, remain after mRNA degradation,
what strongly suggests a geometric burst. On the other hand, if γ < 1 then some of
the newly produced proteins are already degraded while others are being produced
so it is not the case that a single mRNA leaves a geometric burst of proteins be-
hind. Therefore, under the representation assumption, their approach sheds light
on the mechanism of gene regulation in prokaryotic organisms what is supported by
experimental data as we have seen in Figures 1.11 and 1.12.

However, with respect to eukaryotic organisms, complexity in the regulation
process turns it into a very challenging target. Hence, regarding eukaryotes, it
is very unlikely that the gamma distribution gives a good approximation for the
steady state distribution [equilibrium distribution] of the number of proteins in the
cell. Hence, it seems fair to claim that the use of noise as a tool for understanding
gene expression is limited to prokaryotic species.

1.3 A framework for modelling cell differentiation

Considering that TFs are gene-products [proteins ], one can conclude from the central
dogma that genes influence the expression (repression) of one another which gives
rise to the concept of a gene regulatory network (GRN) as illustrated in Figure
1.13(A). Moreover, the set consisting of all genes, that is, DNA coding sequences
and DNA functional non-coding sequences, is defined as the genome. Hence, one
has that the genome S of a living organism can be represented as

S := (x1, x2, x3, . . . , xk−1, xk, xk+1, . . . , xm−1, xm) , (1.129)

with m ∈ N, and xj representing a gene of the genome for all j ∈ {1, 2, 3, . . . ,m}. In
this way, one has that a gene regulatory network (GRN), at the conceptual level, can
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be seen as a directed graph whose nodes represent genes while its edges symbolize
the interaction between two genes−(mutual) repression or (mutual) activation-as
depicted in Figure 1.13(A).

But, what can we say about the structure of the GRN of a living organism?
Actually, it is fully determined by the genome of a living organism. What is the
role of evolution in this determination? In fact, the latter hypothesis asserts that
the genome in a biological population was subject to several physico-chemical trans-
formations over consecutive generations. Those transformations were driven by the
demanding adaptation to environmental changes. Therefore, if we acknowledge that
the genome of a living organism is still evolving, and that the time scale of the
performed experiments is smaller than the time scale of evolutionary processes than
one can assume that the structure of the GRN of a living organism is invariant
on evolutionary life time. Thus far, we can conclude that the concept of GRN is
conceptually dependent upon the concept of genome, which, in turn, is conceptually
dependent upon the concept of gene.

But, if the GRN of a living organism can be regarded as invariant on evolu-
tionary timescale and if we can say that, in light of its invariance, each cell in a
living organism is genetically identical to one another then how can we account for
different cell types such as a skin cell, muscle cell, a nerve cell, and a white blood
cell? In order to answer this question, we have quoted from Semrau et al in [87]:

“(. . .) Here, we review attempts to understand lineage decision-making as the inter-
play of single-cell heterogeneity and gene regulation. Fluctuations at the single-cell
level are an important driving force behind cell-state transitions and the creation of
cell-type diversity. Gene regulatory networks amplify such fluctuations and define
stable cell types. They also mediate the influence of signaling inputs on the lineage
decision. In this review, we focus on insights gleaned from in vitro differentiation of
embryonic stem cells. (. . .) ”

In order to understand the latter quotation, we can draw upon an earlier argu-
ment. In fact, with respect to cell division, it is very unlikely that two genetically
identical daughter cells contain the same number of proteins. Moreover, given that
genes influence the expression of one another, one has that the respective single-cell
heterogeneity gets accentuated by the gene regulatory network, which, in turn, leads
cells to differentiate into different cell types.

Now, if we adopt a process perspective to answer the same question, then it is
necessary that we briefly turn ourselves toward embryonic formation with emphasis
on the differentiation process. So, how can we abridge the conceptual complexity of
embryonic formation in a way in which we can adduce suitable facts to an argument
for a answer to the latter question in line with the scope of this section? In fact, if
we intend to concisely summarize embryonic formation then we might state that a
zygote becomes an embryo by undergoing cell division, proliferation, migration and
differentiation. In fact, a zygote undergoes mitosis, that is, a process through which
a cell gives rise to two isogenic cells. Moreover, those cells divide further, causing
the number of cells to increase. Thereby, the imbalance between the upsurge in cells
(due to cell division) and cell death corroborates cell migration, placing the cells in
the right position to undergo cell differentiation. The latter is a process through
which cells become specialized ones, which, with respect to embryonic formation,
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will result in a multicellular organism-an embryo. So, from a process perspective,
one has that cellular differentiation is a fundamental process so as to go from a
unicellular organism [zygote] to a multicellular organism [embryo].

But, what is the definition of the notion of specialized cell or cell type? At the
empirical level, it is a sort of cell with specific characteristics and traits that has a
particular function to be carried out in a living organism. For example, a skin cell
is a cell type that looks a bit elongated, whose function is to keep the permeability
of the body of a living organism; muscle cells are long and tubular cells responsible
for contraction, and nerve cells, which are indeed specialized in electrical activity,
are cells consisting of a body surrounded by a branching dendritic tree, and a long
axon, through which electrical signals are transmitted down from one neuron to
another neuron; and white blood cells, consisting of round shaped cells, are indeed
specialized in immunity. Having described the definition of the notion of cell type, it
is however essential to emphasizing a distinguishing property of the latter cell types.
In fact, skin cells, muscle cells, nerve cells, and white blood cell neither dedifferentiate
nor do they differentiate further into other cell types, which, in turn, gives rise to
the concept of cell fate.

Nonetheless, are there cell types that can either differentiate into other different
cell types or, perhaps, dedifferentiate, for instance, by becoming stem cells again?
In fact, with respect to the first part of the latter question, one has that during
embryonic formation, which will be thoroughly described in a subsequent section,
trophoblasts cells, forming the outer layer of the blastocyst, differentiate further in
syncitiotrophoblast and cytotrophoblast during the process of implantation of the
blastocyst in the endometrium. The latter two cell type, together with mesenchymal
cells and fetal vascular cells, will give rise to the placenta as described in [104].
Furthermore, if we agree that differentiating into different cell types is a function
in a living organism then it is logically true that stem cells are a cell type. So,
as we shall also see later in this chapter, stem cells differentiate into epiblast cells
and hypoblast cells. The latter cell types differentiate further into the three germ
layers : ectoderm, endoderm and mesoderm. Moreover, the cells forming the three
germ layers will also undergo differentiation resulting in other cell types which, in
turn, will end up differentiating into the cell fates: skin cells, muscle cells, nerve
cells, white blood cells and so forth; giving rise to the whole embryo. Therefore, in
particular, one has that trophoblasts cells and epiblast cells are cell types that are
not cell fates.

As for the second part of the ongoing question, it has been reported in [63] that
mouse epiblast cells underwent dedifferentiation by the inhibition of β-catenin20.
Hence, one has that epiblast cells differentiate further into other cell types with
mouse epiblast cells being amenable to dedifferentiation in vitro upon the inhibition
of β-catenin.

So, what can we conclude from the latter elucidations then? First, as for the
definition of the notion of cell type, one has that it is a cell with specific characteristics
and traits, carrying out a specific function in a living organism. On the other hand, a
cell fate is a cell type that neither dedifferentiate nor differentiate further into other
cell types. Therefore, one has that the notion of cell fate is conceptually dependent
upon the notion of cell type, but not conceptually equivalent thereto.

Withal, how can we apprehend those "specific characteristics and traits" of a cell

20Further in this thesis, we will be talking about the role of β-catenin [protein] in differentiation.
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Figure 1.13: This cartoon has been taken from [37]. A) Genome and the respective
GRN fixed on evolutionary timescale. B) Although the wiring of the GRN is invari-
ant on evolutionary timescale, one has that the level of gene expression varies. C)
Here, one sees the illustration of the GRN in the framework of the dynamical sys-
tems theory. In the context of cell differentiation, one can think of a highly dynamic
GRN whose level of gene expression varies over time.

type from a gene regulatory network perspective ? In fact, by having differentiated,
one has that genes have been switched on and off in each of those different cell types,
which, by drawing upon the central dogma, is equivalent to saying that different
proteins have been made in each of them. Now, if we acknowledge that the respective
proteins determine the "specific characteristics and traits" [phenotype] of a cell, and
more importantly, that they also stipulate the sort of function that must be carried
out by each of the corresponding cell types, then one has that each cell type can be
thought to be characterized by the level of gene expression, or equivalently, by the
gene expression pattern, as illustrated in Figure 1.13 (B).

However, how can the respective level of gene expression be quantified? In fact,
in this thesis, consistent with [86], the level of gene expression is the quantification
of the RNA concentration of lots of genes of interest, which, in fact, is performed by
a technique known as single-cell RNA-sequencing. So, the respective quantification
is supposed to reveal which genes are actually active and how much of each of them
is being transcribed in a single cell. The latter measurement is assumed to stipulate
whether or not a gene is active within a cell type and to strongly indicate which
proteins [e.g. TFs ] are actually made.

Further, a characterization of each cell type based on the level of gene expres-
sion entails some notion of stationarity. Indeed, if we acknowledge that biological
processes are inherently stochastic, then a cell type can be thought to be character-
ized by a multidimensional stationary probability distribution of transcription factors
(TFs) that is robust to small perturbations as time progresses. Hence, one has that
a multidimensional stationary probability distribution is essentially deterministic,
which, in turn, suggests that a dynamical system framework, as an insightful pri-
mary approach, is suitable to model cellular differentiation. But, what is then the
concept playing the role of a multidimensional stationary probability distribution in
the latter framework? In fact, if the number of cells in the cell population is high
enough then, drawing upon the law of large numbers [12, p. 185], one has that
the level of gene expression characterizing a cell type ought to be close to the mean
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Figure 1.14: Here, one sees the developmental path
γ℘ of a cell type ℘, which is essentially controlled
by built-in functionals (the interplay between the
transcriptional and epigenetic mechanisms) f̂℘.

Figure 1.15:
Here, one sees
the illustration
of the cell lin-
eage of a cell
type on the
bottom of the
developmental
tree.

[deterministic limit ] of the corresponding multidimensional stationary probability
distribution. So, one has that a cell type can be seen as a stable equilibrium. Later
in this thesis, we will properly present the definition of this fundamental concept
within the dynamical system framework. The respective concept does capture the
essence of the notion of cell type, seeing that the property of being robust to small
perturbations is indeed inherited by the deterministic limit, and, as we shall see,
this property is indeed in the description of the concept of stable equilibrium.

Moreover, if we draw upon Section 1.2 then we can at some level understand how
TFs are distributed in the cell in a cell population. In fact, in Section 1.2, we give
a concise description of an analytical framework with which Shahrezaei et al in [90]
provided an expression for the temporal evolution of the probability distribution, see
(1.112), and the steady-state distribution, see (1.118), of the number of proteins in
the cell in a cell population. As we have argued therein, one has that the negative
binomial distribution is a reasonable approximation of the equilibrium distribution
of proteins in the cell of prokaryotic organisms, but, with respect to eukaryotic
organisms, due to the complexity in the gene regulation process, it is very unlikely
that the negative binomial distribution gives a judicious approximation of the steady
state distribution of proteins in the cell population.

However, it is not clear that we can argue in the same way with respect to the
notion of cell fate. In other words, does the concept of stable equilibrium captures the
essence of the notion of cell fate ? In fact, as the notion of cell fate is conceptually
dependent upon the notion of cell type, but not conceptually equivalent thereto, then
it seems that the concept of stable equilibrium does contain an important property of
the concept of cell fate but does not capture the essence thereof on its own. In fact,
as far as the author of this thesis can see, the distinguishing property of the notion
of cell fate can only be apprehended by appealing to the concept of bifurcation. The
definition of the latter concept will be presented later in this thesis.

59



60 Chapter 1. Introduction

Figure 1.16: This cartoon has been taken from [23]. As we can envisage in the
cartoon, noise in gene expression boosted by a gene regulatory network determines
in which cell type stem cells will differentiate.

Next, if we apprehend cell differentiation from a gene regulatory network per-
spective, that is, as a built-in process through which the gene expression pattern of
a cell is modified in time and space until it reaches a stable level of gene expression,
then one can think about cellular differentiation as a path in R3+1+m as depicted
in Figure 1.14. As cell types can differentiate further into other cell types until
they reach their ultimate fate, then it seems reasonable to wonder whether or not
there is a pattern in the developmental history of a cell fate. If we presuppose that
the pattern can be characterized by an invariant sequence of cell types leading to a
specific cell fate then one might understand the notion of cell lineage through the
respective sequence, as illustrated in Figures 1.14 and 1.15.

However, what can we say about the mechanisms through which genes are
switched on and off during the course of the process of cell differentiation? In fact, as
we described earlier in Section 1.1, epigenetic mechanisms controls where and when
a target site of DNA become accessible to TFs, by changing DNA-conformation
without altering DNA-sequence [genome]. So, at each time and space, during em-
bryonic development, genes are switched off or on, e.g., are methylated or acetylated,
which, in turn, gives rise to the concept of epigenome. Therefore, under the central
hypothesis of molecular biology, if we appeal to the notion of layers of gene regula-
tion introduced by Semrau et al in [87], then we might be entitled to make the claim
that transcriptional and epigenetic activities presumably comprise the primary layer
of gene regulation. If this is the case then, from a mechanistic perspective, it is log-
ically true that the interplay between transcriptional regulation and epigenome is a
necessary condition for cell differentiation to occur, but, of course, not sufficient. In
fact, as categorically argued by Semrau et al in [87], provided that cell differentiation
involves a network of molecular interactions, one has that characterizing it entails to
understand “the interplay of internal factors (epigenetics, cell cycle, stochastic gene
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expression) and external factors (signaling molecules, cell-cell contacts, mechanical
cues)”; see, e.g., [33] and [103].

But, can we provide a mental model of the concept of epigenome so as to grasp its
definition? In fact, let tembryodiff be the average time for embryonic formation. So, the
concept of epigenome with respect to cell differentiation, can perhaps be understood
as a family

Ldiffepi

(
Ω×

[
0, tembryodiff

]
, 2S
)

=
{
f̂ epi℘ |Ω℘ : ℘ is a cell type

}
of built-in functionals

f̂ epi℘ |Ω℘ : Ω℘ × [0, t℘] ⊂ R3+1 → 2S

(ξ, t) 7→ f̂ epi℘ (ξ, t),

with ξ and t denoting the spatial and time variables, Ω ⊂ R3 being thought to be the
domain wherein embryonic formation takes place, whereas Ω℘ ⊆ Ω ⊂ R3 betokens
the sub-domain in which the cell type ℘ is formed. Moreover, 2S represents the set
of all functions from {x1, x2, . . . , xm−1, xm} to {0, 1}, and t℘ ≤ tembryodiff symbolizes
the average time for the formation of the cell type ℘. Consistently, one has that

f̂ epi℘1
|Ω℘1 ≡ f̂ epi℘2

|Ω℘2 (1.130)

on Ω℘1 ∩Ω℘2 . Thereby, one has that the functionals f̂ epi℘ and f̂ tr℘ indeed determines

γ℘ : Ω℘ × [0, t℘] ⊂ R3+1 → R3+1+m

(ξ, t) 7→
(
ξ, t, f̂℘(ξ, t)

)
,

which, in turn, as illustrated in Figure 1.13, describes the developmental history of
the cell type ℘, with

f̂℘(ξ, t) =
(
f̂ tr℘ f̂

epi
℘

)
|Ω℘(ξ, t) =

{
1 if f̂ epi℘ |Ω℘(ξ, t) = 1

0 otherwise
(1.131)

representing the interplay between transcriptonal regulation, thought to be carried
by f̂ tr℘ |Ω℘(ξ, t) ∈ 2S, and epigenome, thought to be carried by f̂ epi℘ |Ω℘(ξ, t) ∈ 2S.

Therefore, at each point of a cell type developmental history, that is, (ξ, t) ∈ Ω℘×
[0, t℘], one has that chemical changes [e.g. methylation, acetylation] occur in DNA
and the histone proteins enabling [disabling] transcription factors to access target
genes. For example, muscle cells presumably methylate lots of genes involved in the
formation of skin cells, and vice versa. The later mental model is suitably envisaged
in Weddington’s epigenetic landscape shown in Figure 1.16. As a conclusion, one
can say that γ℘ is indeed a precise description of a dynamical system. Hence, from
a deterministic dynamical system perspective, one has that γ℘ is thought to be a
solution of a system of differential equations

dScell

dt
(ξ, t) = F(Scell(ξ, t)), (1.132)

or better,

dxcellj

dt
(ξ, t) = Fj(x

cell
1 (ξ, t), xcell2 (ξ, t), . . . , xcellj−1(ξ, t), xcellj (ξ, t), xcellj+1(ξ, t), . . . , xcellm (ξ, t))

(1.133)
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with the superscript "cell" meaning a "cellular process"21 and with ξ and t denot-
ing the spatial and time variables; whereas Fj, for all j ∈ {1, 2, 3, . . . ,m}, is the
mathematical expression representing the interaction of a single gene xcellj with the
remaining ones in the GRN. However, provided that we need to come up with a
mathematical representation [model ] for the right-handed side of (1.132) solely on
our own, one has that the role of the third-person perspective and the first-person
perspective in the evaluation of such a model will be of utmost importance. Indeed,
we shall be giving a thorough account to that in Chapter 2. But, what about the
conception priority? Does it play a role in the evaluation of such a model? And
what about the formulation of such a model? Regarding the former question, we
refer to Chapter 2. Now, to give an argument for the latter question, we refer to
Leibniz’s Argument for Primitive Concepts in [69]:

“Whatever is thought by us is either conceived through itself, or involves the concept
of another. Whatever is involved in the concept of another is again either conceived
through itself or involves the concept of another; and so on. So one must either pro-
ceed to infinity, or all thoughts are resolved into those which are conceived through
themselves. If nothing is conceived through itself, nothing will be conceived at all.
For what is conceived only through others will be conceived in so far as those others
are conceived, and so on; so that we may only be said to conceive something in
actuality when we arrive at those things which are conceived through themselves. ”

So, Dr. Gottfried Wilhelm Leibniz argues that an appropriate apprehension of a
complex concept must only be possible if there are concepts underlying it and that
are understood through themselves. But, what does Leibniz’s argument have to do
with the role of the conception priority in the formulation of a mathematical repre-
sentation for a biological process, such as cell differentiation? To answer the latter
question, we quote from Dr. Dennis Plaisted in [69]:

“ (. . .) And if the degree to which complex concepts are conceived is directly depen-
dent upon the degree to which they are conceived down to their simple components
(. . .), then complex concepts are conceived to the fullest degree when they are ana-
lyzed into their simple components. ”

Hence, if we draw upon the latter quotation then we can argue that if it is true
that the closer the mathematical representation is to the underlying mechanisms,
the higher is the degree of similarity between the actual dynamics and the one pro-
duced by the model itself; and if it is true that the conception order reflects the
intrinsic order in the set of mechanisms underpinning cell differentiation22, then it is
logically true that the conceptual priority plays an important role in the formulation
of such a model.

21Although cell differentiation, mechanistically speaking, involves the interplay between intra-
cellular and intercellular factors, the product thereof, that is, the change in cellular identity with
respect to the level of gene expression, manifests itself in the single cell.

22In fact, e.g., translation occurs after transcription, and without knowing the concept of tran-
scription, one cannot understand the concept of translation.
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Figure 1.17: This cartoon has been taken from [43]. Here, one sees the illustration
of fertilization, cleavage and blastulation.

1.4 Embryogenesis: a concise process perspective

Regarding embryogenesis, one can say that it initiates with the fertilization, that
is, the fusion of the male gamete [spermatozoon or sperm] with the female gamete
[ovum or egg ]. But, what is a gamete? In the case of an eukaryotic cell, it is a haploid
cell, that is, a cell containing 23 chromosomes instead of 23 pairs of chromosomes.
Upon fertilization, one has the formation of a zygote, which, in fact, is a diploid
cell, that is, a cell containing all the 23 pairs of chromosomes. But, what can we
say about the structure of a zygote? Indeed, it is a diploid cell surrounded by an
outer layer: the zona pellucida. The later is a layer consisting of cells that surround
the female gamete supplying it with nutrients. Moreover, the zona pellucida is also
responsible for the binding of the sperm to the egg, and for limiting the fertilized
egg to a fixed domain as illustrated in Figure 1.17 and shown in Figure 1.19 (a).

However, if a single cell-the zygote-is supposed to become a multicellular organism-
the embryo-then it needs to divide itself [mitosis ] in numerous cells. In fact, one has
that the process of multiplying itself occurs really fast in such a way that there is no
time left for the daughter cells [blastomeres ] to grow. The later process gives rise to
the concept of cleavage, that is, dividing without growing. Besides, the respective
daughter cells are called isogenic ones, that is, with the same DNA. So, with respect
to the aforesaid aspect, the daughter cells are indeed identical to one another. But,
when does cleavage stop? It stops by the end23 of day 3 with the formation of a
32-cell zygote structure known as morula, as illustrated in Figure 1.17 and shown
in Figure 1.19 (e).

23Here, days are counted from the day on which fertilization has been taken place.
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Figure 1.18: This cartoon has been taken from [43]. Here, one sees the beginning
of the implantation process by which, the blastocyst invades the endometrium caus-
ing the trophoblasts to differentiate into cytotrophoblasts and syncytiotrophoblasts.
Moreover, the embryoblasts are also being replaced by a bilaminar layer comprised
by epiblasts and hypoblasts, which, in turn, gives rise to the amniotic cavity. Lastly,
one can also see depicted in this cartoon that hypoblasts starting migrating toward
the surface of the blastocyst cavity during implantation.

Now, it is important to bear in mind that blastomeres can form the whole organ-
ism, which, in turn, gives rise to the notion of totipotent stem cells. Now, upon the
end of the cleavage process, one has that blastomeres start migrating toward each
other forming a compact structure, with the outer cells thereof differentiating into
trophoblasts. Furthermore, despite consisting of blastomeres, one has that the inner
cells are now named embryoblasts. Upon the end of the compactification process,
one has that embryoblasts start polarizing what culminates in a cluster of cells at
one end, which, in turn, causes a fluid-filled cavity24 to emerge at the other end. The
respective cavity is known as the blastocoel [blastocyst cavity ]. After the polarization
process, one has that the resulting structure gives rise to the concept of blatocyst.
So, by the end of day 5, one has the formation of the blastocyst as illustrated in
Figure 1.17 and shown in Figure 1.19 (f). Hence, the process from cleavage to
polarization leading to the formation of the blastocyst, gives rise to the concept of
blastulation.

But, why is the structure of the blastocyst so important during development? In
fact, the outer cell mass, the trophoblasts will cause the placenta to be formed whilst
the inner cell mass, the embryoblasts, will generate the three germ layers [ectoderm,
mesoderm, endoderm] from which all the tissues of the organism will develop. Now,
invoking that embryoblasts are indeed undifferentiated cells, one has that the cells

24This cavity is used to store nutrients.
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(a) A fertilized egg: a zygote. (b) A 2-cell zygote.

(c) A 4-cell zygote.

(d) A 8-cell zygote.
(e) By the end of day 3, a
32-cell zygote gives rise to the
morula around which one still
sees the zone pelucida envelop-
ing it.

(f) By the end of day 5, one
has the formation of the blas-
tocyst. Moreover, it demar-
cates the degeneration and de-
composition of the zona pelu-
cida.

Figure 1.19: These figures have been taken from [2]. Here, one sees the stages
of embryo development during in-vitro fertilization (ivf): from fertilization to the
formation of the blastocyst.

forming the inner cell mass in the blastocyst right after polarization give rise to
the concept of pluripotent stem cells. In fact, when those cells are removed and
cultured, one has the emergence of the concept of embryonic-like stem cells. Unlike
the totipotent stem cells, which can give rise to the whole organism, the pluripotent
stem cells cannot generate the whole organism given that, for instance, they cannot
form the placenta.

Further, immediately after blastulation, one has that the zona pellucida, still
surrounding the blastocyst, starts to degenerate and decompose , which, in turn,
demarcates the beginning of the implantation process, that is, the insertion of the
blastocyst into the inner epithelial layer of uterus [endometrium] as clearly illustrated
in Figure 1.17 and 1.18. So, insofar as the blastocyst (now free from the zona pellu-
cida) invades the endometrium, one has that trophoblasts differentiate into an inner
layer [cytotrophoblasts ] and an outer layer [syncytiotrophoblasts ]. Moreover, the
embryoblasts [pluripotent stem cells ] also differentiate into epiblasts and hypoblasts
what gives rise to a bilaminar layer. The constitution of such a bilaminar layer forms
a new fluid-filled cavity known as amniotic cavity. The amniotic cavity separates
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Figure 1.20: This cartoon has been taken from [79]. Here, one sees the bilami-
nar blastocyst completely implanted in the endometrium by the end of day 8. More
specifically, one clearly sees the bilaminar layer setting two cavities apart from each
other: the amniotic cavity and the primitive yolk sac. Moreover, one sees the appear-
ance of the trophoblastic lacunae in the layer of syncytiotrophoblasts, the emergent
exocoelomic membrane resulting from the migration of hypoblasts, and the approxi-
mation of endometrial capillaries (blood vessels) by the fast expansion of syncytiotro-
phoblasts and cytotrophoblasts.

Figure 1.21: This cartoon has been taken from [79]. Here, one sees a section of a
7.5-day human blastocyst.
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Figure 1.22: This cartoon have been taken from [79]. By the end of day 12, one has
that trophoblast lacunae have fused with each other forming the lacunar networks,
through which the maternal blood will flow upon the erosion of the dilated maternal
sinusoids caused by the fast expansion of syncytiotrophoblasts and cytotrophoblasts,
which, in turn, will cause lacunae to form in the extraembryonic mesoderm.

the bilaminar layer from the inner layer of cytotrophoblasts as illustrated in Figure
1.18.

Next, with the migration of hypoblasts, one has that a new layer is formed, that
is, the exocoelomic membrane, which, in fact, surrounds the primitive yolk sac (it
was however named the blastocyst cavity upon the end of blastulation) together with
the hypoblasts constituting the bilaminar layer, as illustrated in Figure 1.20. So, by
the end of day 9, the bilaminar blastocyst 25 is fully implanted in the endometrium.

Now, owing to a faster growth of cytotrophoblasts and syncytiotrophoblasts in
relation to the cells composing the bilaminar blastocyst one has that small holes [tro-
phoblastic lacunae] begin to emerge in the layer consisting of syncytiotrophoblasts.
Inasmuch as the layer of syncytiotrophoblasts expands further, one has that tro-
phoblastic lacunae fuse with one another giving rise to the lacunar networks, as
illustrated in Figure 1.20 and shown in Figure 1.21.

Further, one has that endometrial capillaries surrounding the bilaminar blas-
tocyst start to become wider as well, which causes them to turn into sinusoidal
structures [maternal sinusoids ]. So, provided that syncytiotrophoblasts will keep on
expanding further then one has that maternal sinusoids will end up getting damaged
owing thereto, which, in turn, will culminate in the flow of maternal blood through

25It is no longer the structure that has been named the blastocyst so we refer thereto as the
bilaminar blastocyst.
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Figure 1.23: These cartoon has been taken from [79]. Here, one sees a fully implanted
12-day human bilaminar blastocyst.

the lacunar networks, which, indeed, allows the exchange of nutrients between the
mother and the developing embryo; as illustrated in Figure 1.22 and shown in Figure
1.23.

Next, while syncytiotrophoblasts continue growing, as informed in [79, p.46], one
has that hypoblasts composing the exocoelomic membrane, presumably begin to dif-
ferentiate into another cell type-the extraembryonic mesoderm-which populates the
layer that is formed between the outer layer of the exocoelomic membrane and the in-
ner layer of cytotrophoblasts. Moreover, owing to the fast growth of cytotrophoblasts
and syncytiotrophoblasts, one has the appearance of holes in the respective layer of
extraembryonic mesoderm cells, see Figures 1.22 and 1.23, which will cause it to
shrink down to a cylindrical structure still consisting of extraembryonic mesoderm
cells, i.e. the connecting stalk. So, the connecting stalk [the primitive umbilical
chord ] connects the bilaminar embryonic structure [the developing embryo] to the
cytotrophoblasts, which, as mentioned earlier, generate the placenta together with
syncytiotrophoblasts. Moreover, the respective shrinking process will culminate in
the formation of a new cavity, that is, the chorionic cavity, which, in turn, is delim-
ited by the inner layer of cytotrophoblasts and by the outer layer of the exocoelomic
membrane.

Now, by the end of day 13, one has that a part of the primitive yolk sac is
removed, resulting in the secondary yolk sac, or simply, the yolk sac. the later is
surrounded by the exocoelomic membrane, which, in turn, is now set apart from the
inner layer of the cytotrophoblasts by the chorionic cavity as illustrated in Figure
1.24 and shown in Figure 1.25. Therefore, up to 2 weeks after fertilization, one has
that the developing embryo is essentially comprised by a round structure, bound to
the cytotrophoblasts by the connecting stalk, containing a bilaminar layer consist-
ing of epiblasts and hypoblasts, and two cavities, the amniotic cavity and the yolk
sac, which, in fact, are set apart from each other by the corresponding bilaminar
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Figure 1.24: This cartoon has been taken from [79]. By the end of day 13, one has
that maternal blood flows noticeably through the lacunar networks, the yolk sac is
formed, and the chorionic cavity is constituted. Furthermore, the developing embryo
is bound to the inner layer of cytotrophoblasts by the connecting stalk.

Figure 1.25: This cartoon has been taken from [79]. Here, one sees a section of a
13-day human bilaminar blastocyst. In fact, the yolk sac is visibly shrunk and the
lacunar networks are mostly filled with blood.
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Figure 1.26: This cartoon has been taken from [53]. Here, one sees the illustration
of the process of gastrulation. The latter initiates with the formation of the prim-
itive streak through which migrating epiblasts invade the hypoblasts cells replacing
them with endoderm cells by undergoing differentiation. The remaining epiblast cells
differentiate into another cell type: mesoderm cells. Moreover, the layer of epiblast
cells also undergoes differentiation, resulting in another cell type: ectoderm cells.
So, by the end of day 16, one has the formation of the three germ layers.

layer. Moreover, the developing embryo is embedded into a cavity itself, that is,
the chorionic cavity, which, as previously said, separates it from the inner layer of
cytotrophoblasts.

However, how will the bilaminar embryonic structure [primitive embryo] develop
itself further? In fact, on day 14, there is the formation of a linear band, the
primitive streak, right in the middle of the epiblast-layer which extends itself as far
as in the vicinity of the connecting stalk, giving rise to the tail while the other end
forms the head of the primitive embryo. In fact, the primitive streak stipulates
the main body axes of the primitive embryo. Next, right after the formation of
the primitive streak, one has that epiblast cells start to migrate to it, through which
they go toward the hypoblast cells, replacing them, when undergoing differentiation,
by a new cell type, which, in turn, is known as endoderm. Moreover, the epiblasts
that remain confined to the domain bounded from above by the epiblast-layer and
from below by endoderm cells, differentiate into an another cell type known as
mesoderm. Furthermore, in the meanwhile, epiblast cells composing the epiblast-
layer, also undergo differentiation giving rise to a new cell type know as ectoderm,
as illustrated in Figure 1.26. Hence, by the end of day 16, one has the formation of
the three germ layers [ectoderm, mesoderm, endoderm], and the respective process
is known as gastrulation.

Now, if one wants to characterize the developmental path through which pluripo-
tent stem cells make their decisions, giving rise to the three germ layers, then it
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is necessary to know what happens with the dynamics of gene expression at the
single-cell level down to the minute. Indeed, Semrau et al in [86] using mouse
embryonic-like stem cells as a model, applied the technique known as single-cell
RNA-sequencing to measure the amount of transcribed RNAs at the single cell
level. The latter measurement is assumed to stipulate whether or not a gene is
active within a cell type and to strongly indicate which proteins are actually made.
Hence, their experiment quantified the dynamics of cell differentiation by unravel-
ing which genes are involved in the differentiation of pluripotent stem cells and how
their expression change through the time up to the decision making.

However, what does the dynamical system theory have to do with their exper-
iment? Indeed, knowing the genes involved in the process of differentiation is not
sufficient to characterize cell differentiation but answering the question of how they
are wired together is of utmost importance. In this regard, as we have argued ear-
lier in Section 1.3, the dynamical system framework offers either the possibility of
conceptualizing the underlying mechanism or the possibility of actually modelling
it.

1.5 Mathematical modelling of the experimental re-
sults

So far, we have argued why we can draw upon the dynamical system framework
to understand cell differentiation and what the conception order has to do with
that. Here, we will be summarizing the experimental results reported in [86] and,
more importantly, we will present a minimal gene regulatory network and a exten-
sion thereof, which, in turn, will be conjectured as a conceptual mechanism for the
observations.

1.5.1 Observations of the Experimental results

In [86], Semrau et al, aimed at characterizing the exit from pluripotency to lineage
commitment, measured the gene expression pattern of mouse embryonic-like stem
cells [mESC-like] undergoing retinoic acid [RA] driven differentiation. So, after 96h
of exposition to retinoic acid [RA] a homogeneous cell population became morpho-
logically heterogeneous, as seen in Figure 1.27.

But, how did the authors quantify the gene expression pattern? In fact, by
applying the single-cell RNA-sequencing technique [RNA-seq] the authors quanti-
fied the gene expression pattern at the single cell level when measuring the RNA
concentration of lots of genes of interest. In doing so, they could determine the
exit from pluripotency and, subsequently, the bifurcation into Ectoderm-like cells
[Ectoderm-like] and Extra-embryonic endoderm-like cells [XEN-like].

Consistent with Section 1.4, one might say that the authors in [86] focused on
giving a characterization of the developmental path, see Figure 1.14, at the level of
gene expression, from blastocyst to the three germ layers, or rather, from stem cells
to the formation of the three germ-layers [ectoderm, mesoderm, endoderm]. How-
ever, as reported in [86], there was no observation of an upregulation of mesodermal
markers26 in the population of cells during the experiments, which, in fact, as ar-

26The concept of marker in the realm of gene expression might be concisely defined as a gene
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Figure 1.27: Figure taken from [86]. Here, on the left side, one sees pluripotent
mECs (round cells) while, on the right side, after 96h of exposition to retinoic acid
RA, one sees elongated cells (differentiated cells).

gued in [86], is consistent with other reports, see [73] , in which retinoic acid [RA]
upregulated neuroectoderm and XEN markers while downregulating mesodermal
markers.

Now, can we be rather specific as to the methodology used by the authors in [86]
so as to determine the exit from pluripotency and the bifurcation into Ectoderm-like
cells [Ectoderm-like] and Extra-embryonic endoderm-like cells [XEN-like]? In fact,
for nP , nX , nE ∈ N>0, we can regard a cell as the fuzzy network vector

cell(tµ) =
(
TF P

1 (tµ), ..., TF P
nP

(tµ), TFX
1 (tµ), ..., TFX

nX
(tµ), TFE

1 (tµ), ..., TFE
nE

(tµ)
)
,

(1.134)

with
− 4 ≤ TF P

iP
(tµ) ≤ 2, (1.135)

for iP ∈ {1, 2, ..., nP}, and
− 4 ≤ TFX

iX
(tµ) ≤ 2, (1.136)

for iX ∈ {1, 2, ..., nX}, and
− 4 ≤ TF P

iE
(tµ) ≤ 2, (1.137)

for iE ∈ {1, 2, ..., nE}, representing the expression of core transcription factors char-
acterizing the pluripotency, the XEN and the Ectoderm networks respectively. As
we have said earlier in this section, this expression is quantified by RNA-seq at each
time point tµ ≥ 0, but is being represented in (1.134) by pseudo-scores. That is,
−4 stands for the lowest expression value while 2 represents the highest expression
value so one says that right hand side of (1.134) characterizes the transcriptional
profile of a cell at the time point tµ.

Further, it has been reported in [86] that the authors quantified the transcrip-
tional profile of over 2000 single cells during differentiation. The quantification was

whose expression is a necessary condition for the transcriptional profile of a certain cell type.
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Figure 1.28: Figure taken from [74]. Here, on the left side, one sees the scatter plot of
the gene expression pattern of cell1 versus the one of cell2. On the right side, one sees
the regression line showing that cell1 and cell2 are positively correlated. Furthermore,
one sees how the first principal component PC1 is defined as the one that spans the
direction with the most variation and how the second principal component PC2 is
defined as the one that spans the direction of the second most variation. So, one sees
that genes located close to the regression line and more grouped in the ends thereof
have the most influence upon the variation in the first principal component PC1.
Similarly, one sees that genes located close to the line perpendicular to the regression
line and more grouped together in the ends thereof have the most influence upon the
variation in the second principal component PC2.

performed at 9 time points with an interval of 12 hours between a time point and its
successor, which amounts to 96 hours in total. But, how did the authors plot this
high-dimensional data? How did they make sense of it? In fact, it has been done
by applying PCA analysis and k-means clustering.

And what is PCA analysis and k-means clustering? To begin with, the data
can be thought as a collection of twelve matrices of dimension 2000×N with N :=
nP + nX + nE. Indeed, if we denote

celli(tµ) =
(
TF P

i1 (tµ), ..., TF P
inP

(tµ), TFX
i1 (tµ), ..., TFX

inX
(tµ), TFE

i1 (tµ), ..., TFE
inE

(tµ)
)

(1.138)

as the vector representing the transcriptional profile of the cell celli for 1 ≤ i ≤ 2000,
then one can define

celli(tµ)[j] :=


TF P

ij (tµ), if 1 ≤ j ≤ nP

TFX
i(j−nP )(tµ), if 1 + nP ≤ j ≤ nP + nX

TFE
i(j−nP−nX)(tµ), if 1 + nP + nX ≤ j ≤ nP + nX + nE

(1.139)

and
G(data)(tµ) := (celli(tµ)[j])i,j (1.140)
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in which celli(tµ)[j] represents the j-th component of the vector celli(tµ) for all
1 ≤ i ≤ 2000 and for all 1 ≤ j ≤ nP + nX + nE at each time point tµ ∈
{0h, 12h, 24h, . . . , 72h, 84h, 96h}.

Further, one can plot the gene expression pattern of cell2 against the one of cell1
as seen in Figure 1.28, in which each dot on the scatter plot represents the expression
of a gene [transcription factor]. On the scatter plot on the right hand side of Figure
1.28, one sees a regression line showing that cell1 and cell2 are positively correlated.
The respective regression line gives rise to the the first principal component PC1-the
one with the most variation-with respect to cell1 and cell2. Moreover, an orthogonal
line thereto forms the second principal component PC2-the one with the second of
most variation-with respect to cell1 and cell2.

So, one sees that genes located close to the regression line and more grouped
in the ends thereof have the most influence upon the variation in the first principal
component PC1. Similarly, one sees that genes located close to the line perpendicular
to the regression line and more grouped together in the ends thereof have the most
influence upon the variation in the second principal component PC2.

But, how can we construct on the basis of the actual data a scatter plot on
which each dot stands for a cell? In fact, drawing upon the influence of each gene
on the variation in PC1 and PC2, at each time point tµ, one can assign (see for
more details Abdi et al. [1]) to each gene a weight [loading] in PC1 and PC2, that
is, [

TF k
r (tµ)

]
PC1

(1.141)

and [
TF k

r (tµ)
]
PC2

(1.142)

with k ∈ {P,X,E} and 1 ≤ r ≤ nP + nX + nE, which, in turn, gives rise to the
eigenvectors ePC1(tµ) and ePC2(tµ) whose components are given by

ePC1(tµ)[r] =


[
TF P

r (tµ)
]
PC1

, if 1 ≤ r ≤ nP[
TFX

r−nP (tµ)
]
PC1

, if 1 + nP ≤ r ≤ nP + nX[
TFE

r−nP−nX (tµ)
]
PC1

, if 1 + nP + nX ≤ r ≤ nP + nX + nE
(1.143)

and by

ePC2(tµ)[r] =


[
TF P

r (tµ)
]
PC2

, if 1 ≤ r ≤ nP[
TFX

r−nP (tµ)
]
PC2

, if 1 + nP ≤ r ≤ nP + nX[
TFE

r−nP−nX (tµ)
]
PC2

, if 1 + nP + nX ≤ r ≤ nP + nX + nE
(1.144)

for all 1 ≤ r ≤ nP + nX + nE. Now, for each cell celli with 1 ≤ i ≤ 2000, one can
compute its principal components. In fact, if we draw upon (1.139), (1.143), and
(1.144) then one can define

cellPC1
i (tµ) :=

nP+nX+nE∑
r=1

celli(tµ)[r]
[
TF k

r (tµ)
]
PC1

(1.145)
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and

cellPC2
i (tµ) :=

nP+nX+nE∑
r=1

celli(tµ)[r]
[
TF k

r (tµ)
]
PC2

. (1.146)

Thus, one can write

celli(tµ) =
(
cellPC1

i (tµ), cellPC2
i (tµ)

)
(1.147)

for 1 ≤ i ≤ 2000 and for each time point tµ ∈ {0h, 12h, . . . , 84h, 96h}. Hence, one
can reduce the high-dimensional data carried by the matrix Gdata, defined in (1.140),
to the 2-dimensional data in (1.147) as shown in Figure 1.31.

But, how can one then cluster cells at each time point tµ ∈ {0h, 12h, . . . , 84h, 96h}
with respect to the 2-dimensional data in (1.147)? In fact, it can be done by apply-
ing k-means clustering [47, p. 289-294]. If we want to concisely summarize the latter
method then we can start saying that k stands for the number of clusters that one
wants to find. So, suppose that one wants to find two clusters [k = 2] at tµ = 96h
then one chooses at random for two different data points cell1(tµ) and cell2(tµ), or
better,

celli1(tµ) =
(
cellPC1

i1
(tµ), cellPC2

i1
(tµ)
)

(1.148)

and
celli2(tµ) =

(
cellPC1

i2
(tµ), cellPC2

i2
(tµ)
)
. (1.149)

with 1 ≤ i1, i2 ≤ 2000. Subsequently, for all 1 ≤ q ≤ 2000 with q /∈ {i1, i2}, one
computes the distances

dq,i2 :=

√(
cellPC1

q (tµ)− cellPC1
i2

(tµ)
)2

+
(
cellPC2

q (tµ)− cellPC2
i2

(tµ)
)2 (1.150)

and

dq,i1

√(
cellPC1

q (tµ)− cellPC1
i1

(tµ)
)2

+
(
cellPC2

q (tµ)− cellPC2
i1

(tµ)
)2
. (1.151)

So, if it is true that
dq,i2 < dq,i1

then we form the set
{celli2(tµ), cellq(tµ)},

but instead, If it is true that
dq,i1 < dq,i2

then we form the set
{celli1(tµ), cellq(tµ)}.

Hence, we will have formed two clusters with celli2(tµ) and celli2(tµ) being the
"leading representatives". What to do then? One computes, in each cluster, the
mean in each principal component forming two new representatives of each cluster.
Now, one computes the distance of each data point to each of the new representa-
tives. As before, we joint the respective data point to the representative to which the
minimum distance is assigned. So, we will have formed two new clusters for which
we must compute the variance. Upon the computation of the variance, we repeat
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Figure 1.29: Figure taken from [86]. Here, one sees the reduction of the high-
dimensional single cell RNA-seq data to one dimensional tSNE-plot. Each data
point corresponds to one single cell. The color of each data point corresponds to the
expression of Rex1 (a pluripotency marker) in relation to the maximum expression
across cells. So, as reported in [86], one sees that after 24h of retinoic acid expo-
sition, the initial cluster splits up in two groups of cells that robustly clumped up
together till the end of day 4 [96h]. Furthermore, the one- dimensional tSNE-data
strongly suggests that the exit from pluripotency started between 12h and 24h and
ended somewhere between 48h and 60h.

the whole procedure over and over again until we find a "satisfactory variance".
But, how to determine the later? The latter depends upon the data analyst and
her knowledge about the kind of data being analyzed. In Figure 1.31, one sees the
scatter plots at each time point of the in vitro differentiation of mESCs resulting
from PCA and k-means clustering analysis reported in [86].

Now, can one determine "key genes" from those scatter plots in Figure 1.31?
In fact, in order to find the "key genes" of the blue cluster in Figure 1.31 for time
point tµ = 96h, one must find the genes that have the most influence on the first
principal component PC1, that is, the ones with the highest PC1 weights[loadings].
As reported in [86], the authors found that the respective set of genes

{sparc, col4a1, lama1, dab2}

consists of well-known markers of extraembrionic endoderm [XEN]. Similarly, in
order to find the "key genes" of the red cluster in Figure 1.31 for time point
tµ = 96h, one must find the genes that have the most influence on the second
principal component PC2, that is, the ones with the highest PC2 weights[loadings].
As reported in [86], the authors found that the respective set of genes

{prtg,mdk, fabp5, cd24}

consists of well-known markers of ectoderm [Ecto]. Upon doing so, Semrau et al. in
[86] conveniently called the cells forming the blue and red clusters shown in Figure
1.31, Xen-like cells and Ecto-like cells respectively. However, how did the authors
in [86] determine the exit from pluripotency? In fact, it was done by applying a
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method which allows for the reduction of the high-dimensional data embodied in
the matrix defined in (1.140) to 1-dimensional data points. In fact, as one can see
in the scatter plot in Figure 1.29, the beginning of the exit from pluripotency lies
somewhere between 12h and 24h.

In order to understand the conditions under which Semrau et al in [86] performed
the respective measurements, that is, the external signals to which mESC-like were
subject during the experiments, it is fundamental to understanding how those sig-
nals ensure the stabilization of the pluripotency network. So, in order to build a
mental model thereof, one can perhaps draw upon Dunn et al in [16], which, un-
der 23 different culture conditions, analyzed the cross-regulatory interaction of 17
transcription factors [Esrrb, Klf2, Klf4, Nanog, Oct4, Tbx3, Tfcp2l1, Stat3, Gbx2,
Sall4, Tcf3, Sox2, Klf5, Nr0b1, Mbd3, Mi2b, Rex1 ] involved in the maintenance of
the pluripotent state of mouse embryonic stem cells (mESCs). In fact, Dunn et
al in [16] used the Pearson coefficient to measure the correlation between any two
transcription factors of the aforesaid set. So, it allowed them to infer therefrom the
sort of interaction (activation or suppression) between any pair of TFs comprising
the hypothesized pluripotency network.

In so doing, Dunn et al in [16] arrived at a metamodel27 of the pluripotency
network. Next, they computationally unveiled a subset of sub-metamodels of the
respective metamodel that satisfy all the 23 culture conditions. Further, they stip-
ulated a suitable threshold for the Pearson correlation coefficient (0.792) so as to
find the minimal set of interactions sufficient to satisfy all the 23 different culture
conditions. Having done that, they found 70 possible interactions, from which,
11 were present in all the corresponding sub-metamodels. The latter interactions
were conjectured as essential ones. Furthermore, they also found that 5 transcrip-
tional factors [Klf5, Rex1, Mbd3, Mi2b, Nr0b1 ] are not necessary to satisfy all the
23 different culture conditions, so they were excluded. Therefore, they could avail
themselves of the aforementioned knowledge to arrive at the minimal sub-metamodel
of 16 interactions (functional but not necessarily direct) and 12 components [Esrrb,
Klf2, Klf4, Nanog, Oct4, Tbx3, Tfcp2l1, Stat3, Gbx2, Sall4, Tcf3, Sox2 ] sufficient
to simultaneously satisfy all the culture conditions, as shown in Figure 1.30.

Now, let P , E, andX denote the variables representing the changes in the expres-
sion of core transcription factors (TFs) of the corresponding cell types, or better,
the transcriptional profile of mESC-like, Ectoderm-like, and XEN-like, respectively.
But, what do we actually mean with transcriptional profile? In fact, intuitively, for
n(P ), n(X), n(E) ∈ N>0, we mean that the variables P , E, and X can be thought
as fuzzy network vectors, that is,

P =
(
TF P

1 , TF
P
2 , TF

P
1 , ..., TF

P
n(P )

)
,

X =
(
TFX

1 , TF
X
2 , TF

X
1 , ..., TF

X
n(X)

)
,

E =
(
TFE

1 , TF
E
2 , TF

E
1 , ..., TF

E
n(E)

)
,

with
0 ≤ TF P

iP
≤ 1, (1.152)

27A model of the hypothesized model.
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Figure 1.30: Figure taken from [16]. Here, one sees the minimal sub-metamodel of
16 interactions (functional but not necessarily direct) and 12 components sufficient to
simultaneously satisfy all the culture conditions reported in [16]. Moreover, one has
that LIF, CH, and PD are abbreviations for leukemia inhibitory factor, Chiron99021,
and PD0325901 respectively. As we see in the figure, the output of a combination
of the later signaling inputs is the maintenance of the pluripotent state [the naive
transcriptional state]. Regarding the interactions, an arrow in red with a small circle
placed at one end betokens suppression, whilst, an arrow in black with a small pile
at one end symbolizes activation. Consistently, an arrow in black with a small pile
at both ends represents mutual activation.

for iP ∈ {1, 2, ..., n(P )}, and
0 ≤ TFX

iX
≤ 1, (1.153)

for iX ∈ {1, 2, ..., n(X)}, and
0 ≤ TF P

iE
≤ 1, (1.154)

for iE ∈ {1, 2, ..., n(E)}, representing the expression of core transcription factors
[RNA-seq data] characterizing the pluripotency network, and the XEN and Ectoderm
networks respectively.

Regarding the reported observations in [86], one has that the experiment per-
formed by adding PD0325901, Chiron99021 and LIF without retinoic acid (RA)
favoured the pluripotency network, which we denote by the observation

O
(CHIR+,PD+,LIF+,RA−)
P , (1.155)

and as reported in [86], one has that, the transcriptional expression profile of the
cells concerning the observation (1.155), were very similar to the one characterizing
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Figure 1.31: Figure taken from [86]. Here, one sees the result of PCA analysis
together with k-means clustering for single-cell RNA-seq data resulting from the
experiments of mESCs exposed to retinoic acid for 96h. Initially, at time point
0h, one has a robust cluster of mESCs that around time point 12h begins to split
up, which, in turn, demarcates the beginning of the exit from pluripotency. At the
time point 96h, one sees that the cells belong to either of the two clusters in red
[Ectoderm-like cells] or in blue [XEN-like cells], that is, the mESCs have made a
decision between the two types of cells.

the E4.5 epiblast28 in vivo (see [70]); while adding neither of the latter ones favoured
Ectoderm-like cells, which we denote by

O
(CHIR−,PD−,LIF−,RA−)
E , (1.156)

as seen in Figure 1.32 (b). As reported in [86], the transcriptional expression pro-
file of the cells concerning the observation (1.156), were indeed characterized by
neuroectodermal markers. Further, adding retinoic acid (RA) without PD0325901,
Chiron99021 and LIF resulted in symmetry breaking, that is, a sub-population con-
sisting of extra-embryonic endoderm-like cells (XEN-like)

O
(CHIR−,PD−,LIF−,RA+)
X , (1.157)

with transcriptional expression profile being characterized by extraembryonic endo-
derm markers, and another sub-population consisting of Ectoderm-like cells (Ectoderm-
like),

O
(CHIR−,PD−,LIF−,RA+)
E , (1.158)

28If we want to be consistent with Section 1.4, then one has that E4.5 epiblasts, as reported
in [70], cannot be stem cells [embryoblasts]. However, provided that E4.5 epiblasts as described
in [70], will differentiate further and give rise to the three germ layers, then one can understand
them as pluripotent cells. Anyway, the author of this thesis is not entitled to make any further
judgment as to the notions of stem cells and pluripotency, what he tries to do is to prevent the
flow of reasoning in this thesis from crossing the sharp borders of formal logic.
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Figure 1.32: Figure taken from [86]. Here, one sees the frequency of cells either
expressing PDGFRA+, a marker for XEN cells, and suppressing CD24−, a marker
for Ecto cells, or expressing CD24+ and suppressing PDGFRA−; as well as cells ei-
ther expressing both markers or repressing them. (a) When exposing mESCS cells to
retinoic acid RA without adding LIF , PD, and CHIR, the histogram informs that,
at time point 96h, the majority of the cells form two clusters, equally distributed,
being characterized by the suppression and expression of one of the two markers:
PDGFRA and CD24. (b) When performing an experiment without LIF , PD, and
CHIR, the histogram informs that the majority of the cells expresses CD24+ and
suppresses PDFRA−.

as seen in Figures 1.32(a) and 1.31. Hence, the latter observation is conveniently
denoted by

O
(CHIR−,PD−,LIF−,RA+)
X,E . (1.159)

However, when performing an experiment by adding theMEK inhibitor PD0325901
and retinoic acid (RA), without Chiron99021 and LIF, resulted in an intriguing
outcome. In fact, there was a significant loss of Extraembryonic endoderm-like cells
whereas the sub-population of Ectoderm-like cells was comparable with the latter
two experiments as shown in Figure 1.33. Moreover, there was an increase of the
number of cells with no lineage marker as seen in Figure 1.33. The latter has
been hypothesized to be the jammed state, whose description is suitably worded in
a quotation from Dr. Stefan Semrau in [85]:

“All in all, our observations showed that MEK inhibition suppressed the XEN lineage
and instead resulted in a jammed state: a stable, strongly biased, undifferentiated
state, transcriptionally close but functionally distinct from the ground state pluripo-
tency.”
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Figure 1.33: Figure taken from [86]. Here, one sees in the histogram the frequency of
cells by performing an experiment with the MEK inhibitor PD0325901 and retinoic
acid (RA), without Chiron99021 and LIF. So, one sees two significant population of
cells, one expressing CD24+ and suppressing PDGFRA− [Ecto cells], and the other
one expressing both of the markers, that is, the hypothesized jammed population.

Thereby, we suitably denote the latter observation by

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

, (1.160)

with JE symbolizing the Jammed state.

Subsequently, as described in [85], they differentiated those jammed cells with
retinoic acid (RA), without PD0325901, Chiron99021 and LIF, and they observed
a strong bias toward Ectoderm-like cells. The later observation of the respective
experiment can be conveniently symbolized as

O
(CHIR−,PD+,LIF−,RA+)
JE

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E , (1.161)
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Figure 1.34: Cartoon taken from [85]. On the left side hereof, one sees a GRN
initially proposed by Dr. Semrau with the pluripotency network repressing the Ecto
and the Xen networks, while the Ecto and XEN networks mutually repress each
other. On the right side hereof, one has the mathematical representation of the
proposed GRN being given by the system of differential equation, with aX and aE
being the respective autoactivation parameters, b being the mutual repression, kX and
kE being the corresponding degradation rates, θ being the value at which each Hill
function in the respective differential equations reaches half of its maximum value,
and n represents the sigmoidicity at X = θ and at E = theta, as argued in [80].
Here, the parameters aX , kX , and kE in orange are varied between conditions while
the other ones are fixed.

and, for the sake of readability, let

O
(CHIR+,PD+,LIF+,RA−)
P ,

O
(CHIR−,PD−,LIF−,RA−)
E ,

O
(CHIR−,PD−,LIF−,RA+)
X,E ,

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

,

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E ,

(1.162)

be denoted by
OT S ,

meaning the set of all the observations of the target system, that is, "Retinoic acid
driven mouse embryonic-like stem cells (mESC-like) differentiation in the presence
of PD0325901 or Chiron99021 or LIF(Lekemia inhibitory factor), or in the absence
of PD0325901 or Chiron99021 or LIF(Lekemia inhibitory factor)" as reported in
[86].

1.5.2 Huang’s model

Having done that, Dr. Stefan Semrau wondered whether or not he could come up
with a conceptual mechanism in silico with which, notably, he could explain the
jammed state, that is, the observation (1.160), as well as the other ones, i.e., the
observations (1.155), (1.156), (1.157), (1.158) and (1.161).
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Figure 1.35: Cartoon taken from [85]. Here, one sees the results of the numerical
experiments performed by Dr. Stefan Semrau when using Euler forward in Huang’s
model. The choice for the parameters were: n = 4, θ = 0.5, aE = 0.7; aX =
[0, 0, 0.7, 0.7], kE = [50, 1, 1, 1], kX = [50, 1, 1, 5], b = 1. As one sees, the model
cannot generate an equilibrium that resembles the Jammed state.

Toward this end, Dr. Semrau extended the GRN model proposed by Huang
et al in [95] to model lineage specification. As we see in Figure 1.34, he initially
considered an extension thereof in which the pluripotency network suppresses the
Ecto and the Xen auto-activating transcriptional networks that mutually repress
each other.

However, the mathematical representation for the respective GRN was the same
one proposed by Huang et al in [95], that is, a model based on Hill-function type
interaction kinetics as seen in Figure 1.34. Moreover, if we invoke the current
consensus that "TFs regulate gene expression in a switch-like fashion", as stated in
[80, p. 95], then one has that the corresponding regulation is thought to be highly
sigmoidal. So, if this is the case then Huang’s model is in line with that.

But, how did he model the conditions with respect to Huang’s model? In fact, kX
and kE model the maintenance of the pluripotency network. So, if the degradation
rates kX and kE are sufficiently high-by means of treating mESCs with PD0325901,
Chiron99021 and LIF -then it potentially results in a low population of Xen and
Ecto cells, so one has that the pluripotent state is indeed characterized by a steady
state with sufficiently low values of the variables X and E.

Further, one has that exposition to retinoic acid RA was modelled by the au-
toactivation parameter aX of the Xen network X. This means that aX ought to
be relatively higher to represent the treatment of mESCs with RA. Lastly, MEK
inhibition was modelled by the degradation rate kX of the Xen network X, which
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means that kX ought to be relatively high which, in turn, intuitively, must result in
a equilibrium with low expression of X and high expression of E as seen in Figure
1.35. But, the latter is indeed the Ecto equilibrium so the model cannot generate an
equilibrium which might be interpreted as the Jammed state whatsoever. So, Dr.
Stefan Semrau realized that he needed another extension.

1.5.3 Semrau-Huang’s model

Due to the impossibility of Huang’s model generating the Jammed state, Dr. Semrau
has then proposed another GRN seen in Figure 1.36. But, how did he model
the conditions with respect to Semrau-Huang’s model? In fact, the autoactivation
aP of the variable P models the maintenance of the pluripotency network. So, if
aP is sufficiently high-by means of treating mESCs with PD0325901, Chiron99021
and LIF -then it potentially results in a high expression of the variable P with a
low expression for the variables X and E. The latter state indeed resembles the
pluripotent state.

Further, one has that exposition to retinoic acid RA was modelled by the param-
eter θX of the Xen network X. This means that θX ought to be relatively lower to
represent the treatment of mESCs with RA. Lastly, MEK inhibition was implicitly
modelled by the dimensionless parameter d, which, in fact, models the suppression
of Xen cells. This means that d should be sufficiently low.

As we see in Figure 1.37, the models seems to suit the purpose seeing that
it generates a Jammed equilibrium. However, the behaviour of the latter one is
inconsistent with observation (1.162)4,5. In fact, if we switch from a sufficiently low
d, for which we presuppose the existence of the Jammed state, to a sufficiently high
d and if we subsequently choose for a sufficient low value of θX then one must have
that the Jammed state will bifurcate. The latter can be thought as the action of
removing the Meki inhibitor from the Jammed cells and adding subsequently retinoic
acid RA to them.

So, from this numerical experiment of Dr. Semrau, actually for that specific
choice of parameters, the model tells him that all the trajectories go toward the
Xen equilibrium. Provided that all the cells differentiated further into a robust
population of Ecto-like cells as reported in [86], one has that the respective nu-
merical experiment contradicts the observation (1.162)4,5. This drawback of this
specific choice of parameters raises the question of whether or not the model suffices
as a conception mechanism to explain the performed experiments, which, in turn,
demands a suitable evaluation.

But, what do we mean with evaluating a phenomenological mathematical model?
What do we exactly mean with finding the observations in the model? What is the
role of the mathematician in that? What is the essence of the meaningfulness of
the parameters of the model? Given that it is inconceivable to test all the feasible
parameter settings, we are in need of deep thinking, that is, a suitable conceptual
framework to elucidate ontological and epistemological aspects of the respective
questions.

In Chapter II, we shall see how we can construct, on the basis of analytical
thought, a systematic evaluation of phenomenological mathematical models that
will be applied to Huang’s model and to Semrau-Huang’s model. Before doing that,
we need to bear in mind the following assertions on Semrau-Huang’s model which
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Figure 1.36: Cartoon taken from [85]. On the left side hereof, one sees a GRN
proposed by Dr. Semrau with the pluripotency network mutually repressing the Ecto
and the Xen networks, as well as the Ecto and XEN networks mutually repressing
each other. On the right side hereof, one has the mathematical representation of the
proposed GRN being given by the respective system of differential equation. In con-
trast to the previous model, changes in the transcriptional profile of the pluripotency
network is being explicitly modelled by the inclusion of a dynamical equation for the
variable P . As for the parameters, one has that aP represents the autoactivation
of the pluripotency network thus modelling the maintenance of the pluripotent state;
θX models the addition of retinoic acid RA; while Mek inhibition is being modelled
by the parameter d. So, the parameters aP , θX , and d in orange are varied between
conditions while the other ones are fixed. How can we make sense of parameter c?
So far, it can be regarded as a presupposition for the corresponding system of differ-
ential equation to make sense so it does not having any particular intention behind
it.

will be invoked further in Chapter 4.

Assertion 1.5.1:

For a sufficiently high autoactivation aP of the variable P , repre-
senting the changes in the expression of the transcriptional profile
of the pluripotency network, one has that Semrau-Huang’s model
yields a stable equilibrium which resembles pluripotent mouse
embryonic-like stem cells.

Assertion 1.5.2:

For a sufficiently low autoactivation aP of the variable P , repre-
senting the changes in the expression of the transcriptional profile
of the pluripotency network, one has that Semrau-Huang’s model
yields a stable equilibrium which resembles Ectoderm like cells.
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Figure 1.37: Cartoon taken from [85]. Here, one sees the results of the numer-
ical experiments performed by Dr. Stefan Semrau when using Euler forward in
Semrau-Huang’s model. The choice for the parameters were: n = 4, θ = 0.5,
θX = [0.8, 0.8, 0.5, 0.5], aP = [5, 2, 2, 2], aE = 0.8; aX = 0.8, k = 1, b = 1, c = 2,
d = [1, 1, 1, 0]. As one sees, the model can generate an equilibrium that resembles the
Jammed state, see lower right panel, but its behaviour in inconsistent with observa-
tion (1.162)5 seeing that upon destabilization of the Jammed state, one has that all
the trajectories go toward the Xen state. That is a harmful property of this choice
of parameters. However, can we find a suitable choice of parameters consistent with
all the observations and that suits the purpose?

Assertion 1.5.3:

For a sufficiently low autoactivation aP of the variable P , represent-
ing the changes in the expression of the transcriptional profile of the
pluripotency network, and for a sufficiently low θX , which model
the addition of retinoic acid RA, one has that Semrau-Huang’s
model yields two stable equilibria which resembles Ectoderm like
cells and Endoderm like cells.
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Assertion 1.5.4:

For a sufficiently low autoactivation aP of the variable P , repre-
senting the changes in the expression of the transcriptional profile
of the pluripotency network, for a sufficiently low θX , modelling the
addition of retinoic acid RA, and for a sufficiently low d, modelling
the suppression of Xen population, one has that Semrau-Huang’s
model yields a stable equilibrium which resembles the Jammed cells
and another one which resembles the Ectoderm like cells.

Assertion 1.5.5:

For a sufficiently low autoactivation of the variable P , representing
the changes in the expression of the transcriptional profile of the
pluripotency network, if we presuppose that the Jammed- and the
Ecto-state coexist for a choice of the parameters consistent with
the intentions of the modelling agent then, for a sufficiently "high"
d and for a sufficiently low θX , one has that the respective Jammed
equilibrium of Semrau-Huang’s model bifurcates, which culminates
in all the trajectories going toward the Ecto equilibrium.

This thesis is further organized as follows. After having argued, in Chapter 1,
that the notion of the order of conceptual priority is crucial in the apprehension of
gene expression, in Chapter 2, we shall delve into the philosophy of logic by exploring
the concepts of judgment from a Fregean and a Kantian perspective. Furthermore,
we shall tell how the elucidations of Dr. Maria van der Schaar, as to the role
of the first person in logic, reveals a systematic evaluation of a phenomenological
mathematical model. Along with that, we explore what the notion of primitive
concept has to do with that. In Chapter 3, we analyse Huang’s model by applying
the methodology introduced in Chapter 2. In that chapter, our main goal is to find
the phase-portrait of the model and to demonstrate the (ins)stability of the steady
states. In Chapter 4, we apply the methodology to evaluate Semrau Huang’s model
followed by a concise discussion and a succinct conclusion.
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Chapter 2

A systematic approach to the
evaluation of phenomenological
mathematical models

The key issue for me is finding the
right definitions; finding the right
definitions that really capture the
essence of some mathematical
phenomenon. I often have some
vague vision of what I want to
understand, but I am often missing
the words to say that.

Dr. Peter Scholze

Here, we will argue that, regardless the field of study, the concept of primitive
notion is fundamental to epistemology. In fact, along with the conceptual order, it
provides a way of defining concepts sequentially. Notwithstanding the importance
of primitive notions in the realm of concepts as well as in epistemology, there is no
act of knowing "something" without an agent-an epistemic subject-to assert, that
is, to execute the cognitive activities; and this is closely related to the purpose of
this thesis, considering that it requires a better understanding of the role of the
first-person perspective in the evaluation and analysis of mathematical models. As
a result, we will conclude that the conception order, the concept of primitive notion,
the concept of judgment and the first-person perspective, in the realm of Frege’s
judgment theory, are fundamentally related to each other concerning the evaluation
of phenomenological mathematical models, which, in turn, will unravel a rational
strategy to perform such an evaluation.
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2.1 The importance of primitive notions in episte-
mology and the role of the first-person in the
evaluation of phenomenological mathematical mod-
els

What is so special about the notion of a gene proposed by Gerstein et al in [27]?
As we have stated earlier, it is a circular definition seeing that it is dependent
upon the notion of a DNA whose definition, in turn, draws on the concept of a
gene. Having said that, one has that the concept of a gene seems to be a primitive
notion, that is, an undefinable notion; which means that it cannot be reduced to
a chain of previously well-defined notions in an independent way. What do we
mean with "in an independent way"? That is supposed to mean that each element
of such a chain has its meaning not referring back to the concept being defined,
that is, the concept of a gene. Withal, how can we approach such a metaphysical
question? Or better, how can we understand such a primitive notion then? In
order to address this question, we go back to 1884 when Dr. Gottlob Frege started
his logicist programme by publishing ’Die Grundlagen der Arithmetik ’. Therewith,
he aimed to establish logic as a foundation for arithmetic, and, consequently, for
mathematics. Or equivalently, he claimed that mathematics was reducible to logic
by means of axiomatization, that is, all the theorems in arithmetic could be logically
deduced from a set of axioms1 with perfect accuracy. The latter properties mean
completeness and consistency respectively. So, though conceptually different from
one another, one can say that, in axiomatization, axioms play the same role as
primitive notions. Nonetheless, in 1931, the logicist programme was forestalled by
the publications [28, 29] of Dr. Kurt Gödel in which he demonstrated his famous two
incompleteness theorems. In fact, he thwarted the logicist programme by showing
that it is impossible to reduce mathematics to a consistent and complete set of
axioms, seeing that such an axiomatic system cannot decide its own consistency
and completeness.

What should we be considering as essential in his attempt to give a foundation to
mathematics with regard to the scope of this thesis? First of all, with the purpose of
understanding some phenomenon, one must be able to reduce it to certain concepts
that are somehow known so it is not conceivable that we can keep performing a
disentanglement of notions forever. So, if we want to assure that we have knowledge
of some phenomenon then there must be notions that cannot be reduced to other
ones. To quote from Dr. Eyal Shahar in [89]:

“Primitive notions are essential in epistemology just as they are essential in mathe-
matics and logic. They are the building blocks of sequential definitions (...). Without
them we do not have the foundation upon which we can state the axioms of science,
propose theories, and draw inference.”

Withal, how can we get access to the meaning of a primitive notion then? Or
equivalently, how can we know a primitive concept? In ’Begriffschrift ’ [22], Dr.

1An axiom is a starting point, i.e. a premise; which is not supposed to be conceptually confused
with primitive notion.
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Gottlob Frege argues that the fundamental laws of logic2 are unprovable. Yet, their
truth can somehow be known in the sense that one can acknowledge their truth. Ac-
tually, "no mediation is needed for anyone to arrive at their truth because it should
be an immediate understanding", as stated by Dr. Maria van der Schaar in some
of her lectures. But, what does Dr. Maria van der Schaar mean with being an
immediate understanding? In fact, if we cannot define a primitive notion in terms
of previously well-defined concepts then we should be able to clarify its essence, or
better, its meaning. Actually, we regard the latter process as a necessary condition
to move through any entailment of notions with respect to the conceptual order. To
quote from Dr. Gottlob Frege in [22]:

“Definitions proper must be distinguished from elucidations ’Erläuterungen’. In
the first stages of a science [Wenn wir die Wissenschaft beginnen] we cannot avoid
the use of ordinary words [die Wörter unserer Sprache]. But these words are, for
the most part, not really appropriate for scientific purposes, because they are not
precise enough and fluctuate in their use. Science needs technical terms that have
precise and fixed Bedeutungen, and in order to come to an understanding about these
Bedeutungen and exclude possible misunderstandings, we provide elucidations. Of
course in so doing we have again to use ordinary words, and these may display de-
fects similar to those which the elucidations are intended to remove. So it seems
that we shall then have to provide further elucidations. Theoretically one will never
really achieve one’s goal in this way. In practice, however, we do manage to come
to an understanding about the Bedeutungen of words. Of course we have to be able
to count on a meeting of minds [ein verständnisvollen Entgegenkommen], on other’s
guessing what we have in mind. But all this precedes the construction of a system
and does not belong within a system. In constructing a system it must be assumed
that the words have precise Bedeutungen and that we know what they are. Hence
we can at this point leave elucidations out of account and turn our attention to the
construction of a system.”

So, we can conclude from the latter quotation from Dr. Gottlob Frege that the
meaning of primitive notions can only be accessed by elucidations [’Erläuterungen’ ],
and we presume that it must be driven by intuition. But, what kind of intuition
then? To answer this question, the author of this thesis would like to quote Dr.
Peter Scholze [83]:

“The key issue for me is finding the right definitions; finding the right definitions
that really capture the essence of some mathematical phenomenon. I often have
some vague vision of what I want to understand, but I am often missing the words
to say that.”

In his description, one can say that Dr. Peter Scholze is trying to understand
some mathematical phenomenon that is solely taking place in his mind so he wants
to grab it, or rather, he wants to apprehend the essence thereof. That apprehension
can subsequently lead him to the formation of a new notion. So, he has knowledge
of the mathematical phenomenon without being able to communicate it immedi-
ately. That sort of driving force in acquiring knowledge of such a mathematical

2The laws of identity, the excluded middle and the non-contradiction.
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phenomenon is regarded as an intellectual intuition or non-empirical intuition. On
the other hand, an elucidation of the concept of a gene, or better, of the notion of
a gene is refined in response to an empirical process3 so it is said to be driven by a
sensible intuition, or better, an empirical intuition.

2.2 From Kant to Frege: the judging agent and the
concepts of empirical and intellectual intuition

In which sense should we be understanding the latter notions of intuition? How is
it essentially connected with the ultimate scope of this thesis? In order to answer
the former question, we draw upon the Kantian epistemology as introduced in [42].
To begin with, as succinctly explained in [66], if we regard a perspective as any form
of epistemic access to "something", that is, an epistemic object, then we say that
"somebody", or better, an epistemic subject has always a first-person perspective
or first-person experience of any phenomenon including or related to an epistemic
object. However, if that access is independent upon the epistemic subject then
we call it a third-person perspective. Now, if "somebody" relies on her own first-
person experiences so as to understand someone else’s first-person experience toward
an epistemic object then we reefer to such an epistemic access as a second-order
perspective. What do we mean with having a first-person experience of "something"?
In fact, it means to be conscious of "something". But, what is necessary for someone
to have a subjective experience of "something", or equivalently, to be conscious of
"something"4? It entails that one perceives herself. Hence, being conscious, or
equivalently, having consciousness involves the existence of a self-concept, a self-
identity or better, an ego. Hence, as for the Kantian epistemology, the notion of an
ego precedes the notion of consciousness.

As we have exhaustively argued so far, knowing "something" demands a decom-
position of the definition of the concept of that "something" in well-known notions
or sufficiently well-understood notions5. However, in the latter hypothetical decom-
position, each well-known notion has been known at a certain point in time and
space so that knowing the entailment of notions leading to the apprehension of that
"something" necessitates that one has the ability of unifying them. But, what do
we mean with "the ability of unifying them"? In fact, if we agree that the act of
knowing "something" is preceded6 by the act of thinking which, in turn, is preceded
by the act of being conscious of 7 what one wants to understand, and, more impor-
tantly, if we acknowledge that consciousness changes direction in time and space,
that is, we are always conscious of "one thing" at a time, then an epistemic subject
needs to be endowed with built-in capabilities (consciousness, thinking, judgment,
and so forth.) underpinning that unifying process in time and space, leading her to
have knowledge of "something". The latter conception of a set of built-in capabili-
ties defines Locke’s conception of mind in [52]. Indeed, Locke’s notion of mind is a

3An observation or an experiment.
4Here, so far, "something" is thought to be an epistemic object outside in the world.
5In the case of primitive notions.
6Here, preceding means going after the other one in time and space, but not necessarily at the

conceptual level. In fact, as we mentioned earlier, the notion of knowledge is primitive. However,
the act of knowing goes after manifold acts.

7 Or equivalently, the act of perceiving.
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distinct concept in Kantian epistemology.
Now, if it is true that manifold acts antecede the act of knowing according to a

temporal, a spacial or a conceptual hierarchy then the mind is a multihierarchical
set of built-in capabilities. Hence, the set of all built-in sequences of acts with
respect to that multihierarchy gives rise to the concept of cognition. In fact, for
instance, an epistemic subject perceives an epistemic object, that is, "something", at
a certain point in time and space, followed by thinking about the properties of that
"something", which, in turn, is followed by reasoning through the relation among
those properties leading to a judgment, that is, the acknowledgement of the truth of
a claim as to that "something" which, actually, results in having knowledge of that
"something". Therefore, one can say that the Lockean mind is the set of all built-in
capabilities of cognition. Moreover, consistently, one has that the concept of mind is
conceptually dependent on the concept of cognition which, in turn, is conceptually
dependent on the concept of consciousness.

So, what is an empirical intuition in the Kantian epistemology? It is the acqui-
sition of knowledge through experience. In fact, it is grounded in the presumption
that the mind possesses a priori forms of intuition8 (space and time, cause and
effect, and so forth) that give form to all the experiences of an epistemic subject. To
quote from Dr. Immanuel Kant in [94]:

“All our knowledge is thus finally subject to time, the formal condition of inner
sense. In it they must all be ordered, connected, and brought into relation.”

Clearly, one cannot account for Dr. Peter Scholze’s acquisition of knowledge on
the basis of an empirical intuition. Why not? First of all, in his description, the
epistemic object is in his mind by means of an act of thinking and is not outside in
the world whatsoever. Secondly, being aware of the fact that he is thinking about
that "something" entails that he is conscious of his own consciousness which, in
turn, demands the acknowledgement of a self-ego, or equivalently, an non-empirical
ego, or better, a transcendental ego. In this regard, one has that such an acquisition
of knowledge describes an intellectual intuition. Therefore, the epistemic subject,
or better, the judging agent acknowledging the truth of a thought or a claim, lead-
ing to the accretion of knowledge can either be seen as an empirical ego or as a
non-empirical ego (transcendental ego).

As we have stated in the abstract of this thesis, we analyze a phenomenological
model based on Hill-function type interaction kinetics for cell differentiation so as
to decide whether or not it adequately defines a conceptual mechanism for the per-
formed experiments in [86]. What is a phenomenological mathematical model? To
answer this question, we refer to the definition given in [75]:

“A traditional definition takes them to be models that only represent observable
properties of their targets and refrain from postulating hidden mechanisms and the
like.”

But, what is essential in the latter definition? In fact, it is crucial to acknowl-

8They are not in the world. So, they cannot be known by experience. Actually, as we have
argued, they are built in the mind so as to enable any form of consciousness, or better, any sort
of first-person experience.
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edge the importance of the modeling agent who actually translates some empirical
process into a mathematical object9. In that translation, she is subject to her own
first-person experience so as to mathematically describe observable properties of the
target system10. Hence, it means that each component of that mathematical object,
as well as their relations in that mathematical representation, has an intentionality,
which, in turn, rightly places our thoughts in the context of Husserlian philosophy.
To quote from Dr. David W. Smith in [93]:

“In Husserl’s own words, phenomenology is the science of the essence of conscious-
ness(...). What, briefly, is the essence of consciousness? First, every experience, or
act of consciousness, is conscious: the subject experiences it, or is aware of perform-
ing it. (...) Second, every act of consciousness is a consciousness of something: in
perception I see such-and-such, in imagination I imagine such-and-such, in judgment
I judge that such-and-such is the case, and so on. This property of consciousness,
its being of or about something, Husserl called intentionality. Thus, we say an ex-
perience is intentional, or directed (...) toward some object.”

As Dr. Edmund Husserl described in the latter quotation, a subjective experience
is directed to an object, that is, it carries an intention. But, how are the conception
order, the concept of a primitive notion, the concept of judgment and the first-person
perspective essentially connected with the purpose of this thesis? In fact, judging is
the activity through which we gain knowledge. To quote from Dr. Martin Löf in [55]:

“..., namely, to judge is the same as to know, more precisely, to get to know, which
is to say that the act of judging is the very act of knowing, and that that which is
judged is that which is known, that is, the object of knowledge. And knowing is of
course to be taken here as a primitive concept; you can clarify it in various ways,
but you cannot reduce it to any other kind of notion. ”

As one sees in the latter quotation, Dr. Martin Löf identifies the notion of knowl-
edge with the notion of judgment. So, the acquisition of knowledge depends on the
judging agent. To quote from Prof. dr. Maria van der Schaar [81]:

“Logical questions are independent of psychological questions. But, as a theory
of validity of inferences and rationality of our judgements, logic relates to what
judging agents do. How can logic be objective if it takes its starting-point in the
inferences and judgements we make? Is the judging agent perhaps a transcendental
or some other kind of ideal subject?”

In order to understand the latter quotation from Dr. Maria van der Schaar, one
needs to acknowledge that correct judgements about a mathematical object are cer-
tainly independent on the judging agent. To go further, we draw upon a quotation
from Dr. Gottlob Frege in [81]:

9In this thesis, it refers to a system of differential equations.
10Or equivalently, the ontological counterpart. The latter represents the phenomenon being

observed, that is, "Retinoic acid driven mouse embryonic stem cells (mESCs) differentiation in the
presence of PD0325901 or CHIR99021 or LIF(Lekemia inhibitory factor), or in the absence of
PD0325901 or CHIR99021 or LIF(Lekemia inhibitory factor)" as reported in [86].
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“judging(acknowledging as true) is certainly an inner mental process; but that some-
thing is true is independent of the knowing agent, is objective.”

So, if we regard such a phenomenological model as a mere mathematical object then
we need to consider the Fregean notion of judgment, or equivalently, the logical no-
tion, that is, a judgment as an acknowledgement of the truth of a claim. In fact, the
relation between judgment and truth is an essential elucidation in Frege’s logic.

Drawing upon the Fregean notation in [22], one has that

` A, (2.1)

should represent a judgment that has been made, in which A is the judgeable con-
tent (assertion), and the judgment stroke ` can be interpreted as an assertive force,
which together with the content A expresses the judgment, or better, the act of
judging which, in turn, by invoking the elucidations of Dr. Martin Löf in [55], is
equivalent to the act of knowing. To quote from Dr. Maria van der Schaar in [81]:

“By putting the judgement stroke in front of an axiom, the agent claims not only
that the Thought is true, but that anyone who understands the Thought thereby
acknowledges it as true, and is thus entitled to use it as an axiom. By putting the
judgement stroke in front of a theorem, the agent claims that anyone who knows
the axioms and has made the relevant inference rules evident to himself or herself is
entitled to use the theorem as a logical law. These judgements are thus made from
a first-person perspective, but they are non-personal at the same time.”

So, acknowledging the truth of a mathematical assertion [theorem] requires a first-
person perspective even though the truth is independent upon the judging agent.
Having said that, one can conclude that Dr. Gottlob Frege vehemently believed
that logic forms the foundation for all the sciences. To quote from Dr. Maria van
der Schaar in [81]:

“Frege’s elucidations of primitive terms differ in an important way from the a priori
truths given in the phenomenological tradition. Whereas for Brentano and Husserl
descriptive psychology or phenomenology is a science that precedes logic, for Frege
logic is the foundational science. Primitive notions, such as judgement and truth,
can only be understood by relating them to each other in elucidations. Frege’s claim
that judging is acknowledging the truth of a Gedanke is such an elucidation. What
precedes logic is propaedeutic, consisting of elucidations, sharply to be distinguished
from a priori truths, and from definitions as well, which do have a role within logic
as science.”

So, according to Dr. Maria van der Schaar, elucidations of primitive notions are
crucial for anyone who wants to acknowledge the truth of a claim by herself, but the
truth of an assertion is independent on the judging agent. In this regard, the judging
agent of such a phenomenological model can perhaps be understood as a transcen-
dental ego, or equivalently, a non-empirical ego. However, in [81], Dr. Maria van
der Schaar argues that such a transcendental ego needed in Frege’s logic must differ
from the Kantian transcendental ego, which, as we introduced earlier, accounts for
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self-consciousness. In fact, if a judgment in Frege’s logic is an acknowledgment of
the truth of a claim then no property is required from such an ego needed to assert.
Moreover, via negativa, as it cannot be the Kantian empirical-ego and does not need
to be the Kantian transcendental ego then she conjectures that such a transcendental
ego can be regarded as a presupposition so as to enable the constitution of Frege’s
logic. But, can such a ego be conceived? To quote from David Carr in [8]:

“...A pure ego [transcendental ego] distinct from the empirical one would seem to
be an ego without particular properties. Can such a thing exist?...In order even
to think of it as a particular existent, don’t we have to think of it as possessing
properties?

To these questions a traditional answer has run as follows: What I am conscious
of in pure apperception is not a particular, and it is for this reason that I do not need
to attribute particular properties to it. Also, for this reason, it must be regarded
as distinct from the empirical ego. What I am conscious of is not those particular
properties which distinguish me from other persons, but rather those general prop-
erties which I share with any and all other egos, such as thinking as such. ...Such
an ego is "transcendental" because it transcends all particular egos like you and me.”

So, in Dr. David Carr’s account of the Kantian transcendental ego, as far as the
author of this thesis can understand it, such an ego is already the one presupposed
by Prof. dr. Maria van der Schaar in [81]. In fact, Dr. David Carr argues that
being conscious of thinking is not distinguishing, but rather reinforcing the self-ego
transcendence. Nonetheless, we avoid going in the direction of the metaphysics of
the Kantian transcendental ego11 given that it deviates from the scope of this sec-
tion. Actually, the author of this thesis regards such an account as a very difficult
task and he doubts whether he would have the tools to do that. In sum, so far,
he wants to emphasize that if a phenomenological model is merely regarded as a
mathematical object then a logical notion of judgment-an acknowledgement of the
truth of a thought- is required, considering that the correctness of mathematical
judgements is objective. But, there is no assertion without an agent so, in this case,
as she cannot be psychological, that is, empirical, then such a judging agent can be
understood as a transcendental ego.

Now, if we consider that such a phenomenological model is inherently psychologi-
cal, or equivalently, if we acknowledge that each element of such a phenomenological
model, as well as their relation, has a specific intention. How do those intentions
manifest themselves in the model? In fact, they are supposed to comply with the
epistemic status of the ontological counterpart and, more importantly, to promote
the reproduction of the observations thereof. So, we are in need of a psychological
notion, or better, an empirical notion of judgment. In this regard, a judgment is a
mental activity in response to an empirical process. To quote from Dr. Maria van
der Schaar in [81]:

“When studying the act of judgement, one may distinguish two different points
of view: one may study judgement from an empirical or from a logical point of view.
From an empirical point of view, one understands judgement as an event in the
world, to be represented by a predicate. Describing what John does, one may say

11See [54] for a thorough approach of the metaphysics of the Kantian self-ego.
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‘John judges that snow is white’. Judging is here understood as a relation obtaining
between John and the thought that snow is white.”

To understand the latter quotation, we can give an example. In fact, let

(aP , aE, aX , θX , θE, b, c, d, n, k) ∈ R10

be a parameter setting of the dimensionless equations of Semrau-Huang’s model-
described in Section 1.5-and define

ãP := max{aX , aE}. (2.2)

Next, Let
M(aP ,aE ,aX ,θX ,θE ,b,c,d,n,k) (2.3)

represent Semrau-Huang’s model with parameter setting

(aP , aE, aX , θX , θE, b, c, d, k, n) ∈ R10.

Given that each of the latter parameters has an intentionality [directionality ], the
judging agent might claim that

`Ψ aP � ãP → scM ∼ O
(CHIR+,PD+,LIF+,RA−)
P , (2.4)

which means that choosing the parameter aP much greater than aX and aE implies
that the model gives rise to a scenario scM that is similar [∼] to the observation

O
(CHIR+,PD+,LIF+,RA−)
P . (2.5)

But, what is a scenario? Even though the definition of a scenario is only pro-
vided further in this chapter, one can, so far, say that it is indeed the mathematical
counterpart of an observation, that is, a description of some of the model’s prop-
erties with respect to a specific question. Furthermore, in (2.4), the sign `Ψ must
not be confused with the Fregean judgment stroke `, which is an assertive force,
acknowledging the truth [objective] of a thought [claim], but instead, `Ψ ought to
be interpreted as a sign representing a mental activity12 that has occurred in time
and space in response to an empirical process. Hence, in this case, one has that
an empirical notion of judgment is the product of a mental process in response to
experience so it is an event in the world characterized by a relation between the
thinker, or better, the agent and a thought. In fact, asserting that the parameter
aP � 1 should correspond to an observation, in our case, is representing a property
of the observable (experiment). Thereby, as an event in the world, one has that a
judgment as an empirical phenomenon demands a third-person perspective.

As for the evaluation of such a phenomenological model, one still needs to decide
whether or not a scenario is adequately similar [∼] to an observation. In fact, owing
to the fact that the judging agent and the modelling agent might not be the same
epistemic subject, the author of this thesis conjectures that a proper answer for the
latter question perhaps requires that one sheds light on the role of the second-person
perspective in mathematical models.

12Here, Ψ should be regarded as the psychology symbol. In so doing, `Ψ betokens that a
judgment has been made in response to an empirical process.
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In sum, the author of this thesis has purported to illustrate the duality of the
judging agent as a transcendental ego and as a psychological ego, or rather, as a non-
empirical ego and as an empirical ego respectively. In fact, in the analysis of such a
phenomenological model, through which judging actions are made, the judging agent
can be seen as the sum of two components, that is, two projections of herself entirely
necessary for her to keep getting knowledge of such a model. Furthermore, this
duality must be emphasized in the discrimination of the two involved perspectives,
that is, the first-person perspective and the third-person perspective, along with the
difference between a logical and an empirical notion of judgment. Ergo, undermining
such a duality of the judging agent can presumably cause an impingement upon the
evaluation of a proposed mathematical representation of a target system.

2.3 Frege on Truth

So, how are then the conception order, the concept of primitive notion, the con-
cept of judgment and the first-person perspective fundamentally related to the aim
of this thesis? First of all, if we acknowledge that, regardless the field of study,
there is indeed an order among all our concepts, and that primitive notions are
the elementary units of our knowledge, then this view seems to bestow a rational
strategy that can be used to analyze and to evaluate the proposed phenomenological
mathematical models. As this evaluation distinctively involves the formulation of
’statements about mathematical objects ’ [propositions ]13 then we need to apprehend
the concept of ’truth’. Indeed, a proposition is defined as a statement (e.g. about
a mathematical object) "for which it is reasonable to ask whether it can be proved
true or not true[false] ", so it is conceptually dependent upon the notion of proof 14

[demonstration] and truth.
Now, considering that the concept of an assertion is defined as "a statement that

one strongly believe to be true" then one has that an assertion is, by definition, a
proposition. However, the converse may not be true for all propositions. Why not?
The judging agent [mathematician] can definitely come up with a proposition with-
out being overwhelmingly convinced that it is true. For instance, it might consist of
a statement that is derived from some calculation during the mathematical analysis
of the model, which, in this case, would not necessarily demand any assertive force
in the act of proposing. Despite the latter remark, from now on, unless we explicitly
consider otherwise, we shall only regard the judgeable content as an assertion.

But, what is the definition of the notions of truth and proof ? In fact, the notion
of proof of a judgement "“is a chain of reasoning, and what it purports to do is to
make the final judgment of that chain known, or evident”"; as literally formulated
by Dr. Martin Löf in [56]. Or equivalently, it is a chain of correct judgments [true
assertions ] that shows the correctness [truth] of the last judgment[assertion]. So,
it is conceptually dependent upon the notion of truth, which, in turn, propounds
that the notion of truth might be in our conceptual foundation as a fundamental

13With the aim of determining whether or not the model suffices to adequately explain the
observations.

14So far, we have been using the epistemic counterpart hereof, that is, a ’ demonstration’.
However, by means of simplicity, from now onward, we shall use ’proof’ and ’demonstration’
interchangeably.
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one. But, how can we elucidate it? In order to do that, we must now turn our
attention to the role of logic in the working of the judging agent [mathematician],
which conspicuously encompasses the acts of reasoning and proving; culminating in
the acquirement of knowledge. To quote from Solomon Feferman in [19]:

“The aim of the mathematician working in the mainstream is to establish truths
about mathematical concepts by means of proofs as the principal instrument.(...)”

“(...) I am guided throughout by the simple view that what logic is to provide
is all those forms of reasoning that lead invariably from truths to truths. The prob-
lematic part of this is how we take the notion of truth to be given.”

So, according to Dr. Solomon Feferman, the notion of truth is a prominent one
as regards the working of the judging agent [mathematician]. Withal, what can we
tell about the notion of truth in the Fregean logic? To answer the latter question,
we quote from Dr. Maria van der Schaar in [81]:

“(...) Martin [Dr. Wayne M. Martin] brings out the notion of truth as a unique
presupposition for logic: ‘logic presupposes and cannot explicate a pre-logical un-
derstanding of truth’ (...). This Heideggerian thesis Martin also finds in Frege’s
writings: ‘Frege insists... that the most basic logical notion is neither concept nor
judgment but truth ... Here, Frege effectively approaches the central claim of Hei-
degger’s mature philosophical logic’ (...). It is true that in early and later writings
Frege claimed that the aim of logic is to know the laws of truth (...); the logical laws
are a development of the content of the word ‘true’ (...). However, judgement seems
to play an equally important role, as Frege characterizes the laws of logic both as
the laws of truth and as the laws of judgement. ”

Hence, according to Dr. Gottlob Frege, the notion of truth is a primitive one, that
is, it is indefinable. Why? To give an argument for that, we draw upon a quotation
from "Über sinn und bedeutung" that can be found in [5, p. 159]: "“Judgments
can be regarded as advances from a thought to a truth value"”. Hence, as far as the
author of this thesis can see, in the Fregean logic, truth has a qualitative account,
that is, it is a feature of an assertion. If this is the case then we can assign the
feature "true" to an assertion that is thought to have it, and "not true" [false] to
an assertion that is thought not to have it. Thereby, truth is then defined as "the
quality of being true" so we end up in a circular definition. But, if it cannot be
defined then how can we understand it in the context of the Fregean logic? As far
as the author of this thesis can see, if we want to avoid giving the status of a pre-
supposition to it, which seems to be evasive and not to capture the essence thereof,
then we are in need of a suitable elucidation . In fact, we quote from Dr. Erich H.
Reck in [71]:

“In Frege’s writings, the three notions mentioned in the title of this paper—truth,
judgment, and objectivity—are all prominent and important. They are also closely
related to each other, as is made explicit at various places. In "On Sinn and Be-
deutung", Frege relates the first two as follows: "Judgments can be regarded as
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advances from a thought to a truth value" (. . .); at other places, including the late
article "Thought", he also characterizes judging as "the acknowledgement of the
truth of a thought" (...). Relating the second and third notions, he remarks in The
Foundations of Arithmetic: "What is objective . . . is what is subject to laws, what
can be conceived and judged, what is expressible in words" (. . .). ”

So, in the latter quotation, Dr. Erich H. Reck provides a suitable elucidation
for the conception of truth, by asserting that the essence of the notions of truth
and judgment, in the Fregean logic, are entangled with each other. Therefore, one
cannot apprehend those notions separately from one another. In fact, if we invoke
the elucidation provided by Dr. Martin Löf in [55], that is, the act of judging, namely

` A, (2.6)

as the very act of knowing what is being judged−the assertion A-then, as far as the
author of this thesis can see, the non-empirical notion of judgment in the Fregean
logic-an acknowledgement of the truth of an assertion-can also be understood as
an act of recognizing an intrinsic assignment [objective] of a quality ["truth"] to an
assertion A, or rather, as an act of satisfying/fulfilling a kind of wish ["that the as-
sertion A is true"]. In sum, the judgeable content A as a proposition in the Fregean
logic is either true or not true [false] as succinctly enlightened by Dr. Göran Sund-
holm in [96]:

“Tradition is classical. Surely, nothing could be more pleonastic than that? The
logical tradition, certainly, was squarely classical from Bolzano to Carnap, with,
say, Frege, Moore, Russell and the Wittgenstein of the Tractatus as intermediaries.
Propositions are construed as being in themselves true-or-false. Indeed, in this tradi-
tion, a declarative sentence S expresses a proposition (or is a proposition, depending
on what version of the theory that is adopted) by being true-or-false. So the mean-
ingfulness of a sentence consists in its being true-or-false. But S is true-or false, or
so they say, only when S is true, or when S is false. On the classical account the
presumption of bivalence is built into the very notion of meaningfulness: there is no
difference between asserting that is a proposition and asserting that A is true-or-
false.(. . .)”

Nonetheless, truth might not be a primitive notion in another logic as one can
see below in the quotation from Dr. Martin Löf in [55]:

“(. . . ) Intuitionistically, truth of a proposition is analyzed as existence of proof:
a proposition is true if there exists a proof of it. Now, I will not dwell upon the
notion of proof of a proposition, because a proposition is defined precisely by ex-
plaining what a proof of it looks like; so, once we know the proposition, we certainly
know what a proof of a proposition is. But look at the other component that I
use to define the notion of truth, namely, the notion of existence. It is quite clear
that the notion of existence that enters here is not the notion of existence that is
expressed by means of the existential quantifier: rather, the notion of existence of
an essence, if you prefer, where by saying that a concept has existence I mean that
there exists an object which falls under the concept. So to say that a proposition is
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true is the same as to say that the concept proof of the proposition has existence in
the traditional philosophical sense. ”

So, according to Martin Löf, the intuitionistic notion of truth is reducible to the
primitive notion of existence, that is, the existence of a conception of proof. So, a
proposition A is true if and only if there exists a proof of A. Therefore, one has
that the latter elucidations of the notion of truth will help us to sharply demarcate
the domain of the evaluation of the proposed models. But, which notion of truth
should we be adopting then: the Fregean notion-as an assignment of a truth value-
or the intuitionistic notion-as a construction of a proof ? In order to answer the
latter question, we need to clarify for ourselves which role logic exactly plays in our
rational approach.

2.4 The role of logic in the acts of the judging agent

But, what is the role of logic in the working of the judging agent [mathematician]
? In fact, logic gives the rules of inference with which the judging agent can prove
mathematical assertions on the modelM. Furthermore, according to Dr. Solomon
Feferman in [19], such rules of inference are supposed to "“lead invariably from truths
to truths”".

Now, if we bear in mind that we want to evaluate the phenomenological math-
ematical model M, which intuitively means that we want to appraise its appropri-
ateness as a conceptual mechanism that explains the observations ; then we must
be able to compare properties of the target system with the ones generated by the
mathematical assertions on the modelM. But, how should we be thinking then in
our rational approach? In fact, we cannot establish any containment relationship
between those sets of properties [true assertions ] in a proper way by simply using
a natural language [e.g. English, Dutch, German, . . .] so we are in need of a formal
language.

2.5 Toward a rational understanding: a formal lan-
guage for the proposed models

But, what is a formal language? In fact, it is a language with which the judging
agent can properly formalize a mathematical assertion stated in a natural language
so that, in our context, it does make sense to talk about a set of assertions containing
another set of assertions. Furthermore, one has that the true value of an assertion
can be formally established therein. In fact, let L∗ denote such a formal language.
So, as for the alphabet of L∗, if we build upon the formulation given in [32, 11]
then one has that ’nouns’, ’compound nouns’, and ’similar expressions’ in a natural
language (e.g. critical auto-activation, critical threshold concentration, endoderm-
like state, ectoderm-like state, pluripotent-like state . . . ) are formalized as constant
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symbols. Hence, one assumes that L∗ has infinitely many constant symbols, namely

α, β, γ, α1, β1, γ1, α2, β2, γ2, . . . . (2.7)

Next, in order to formalize ’nouns’, ’compound nouns’, and ’similar expressions’
in a natural language that range over a set consisting of a particular type of object
(e.g. auto-activation, threshold concentration, mutual interaction, degradation pa-
rameter, pluripotent cells, ectoderm-like cells, extra-embryonic endoderm-like cells,
time, . . . ), one assumes that L∗ has infinitely many variable symbols, namely

aP , aX , aE, θP , θX , θE, b, k, c, d, n, p, x, e, , z , t, āP , āX , āE, θ̄P , θ̄X , . . . .
(2.8)

Further, considering that we want to split a sentence, formulated in a natu-
ral language, in such a way that its formalization in the formal language provides a
precise information as to which class, for instance, a noun belongs, and, more impor-
tantly, about the amount of it being considered (e.g. for all values of the threshold
concentration higher than the critical value, ...), then one has that the quantifiers∨

,
∧
, (2.9)

meaning "there exists" and "for all" respectively, are also included in the formal
language L∗ so as to assure that. Moreover, so far, one considers variables that
range over a particular set consisting of non-logical objects, which, in this case,
describes a first-order logic. Nonetheless, it may be the case that variables range
over a set consisting of logical objects (e.g. m-place predicate letters), which, in turn,
configures a higher-order logic. Therefore, one has that we consider a translation of
mathematical assertions on the modelM into a first-order language L∗.

Now, since English sentences can be combined to give rise to compound sentences
in a natural language then one endows the formal language L∗ with the connectives

¬, ∨, ∧, →, ↔, (2.10)

which resembles, in particular, the English expressions "it is not the case that",
"or", "and", "if . . . then", and "if and only if" respectively15.

Further, in contrast to qualitative identity, which, as we shall see further, can
be formalized without introducing new symbols, numerical identity, wherein we are
actually interested, is formalized with the addition of the symbol

= (2.11)

to the formal language L∗. Moreover, in order to enhance clarity and avoid ambi-
guity, one also adds the following auxiliary symbols to L∗:

>, ⊥, :, ( ), [ ], (2.12)

with : and ( ) being used for clarity and readability; with > and ⊥ meaning a
tautology and contradiction respectively; and with [ ] being used to symbolize a
"discharged assumption" in the formal language, as it will be introduced later in
this section.

15As long as no confusion can occur among the symbols:
∨
; ∨;

∧
; ∧.
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Thus far, we have been talking about sentences in a natural language without
having at least defined it informally. So, what is a sentence? In fact, the concept of
sentence in a natural language [English] is defined as "a string of words expressing
a thought and containing a verb". Hence, seeing that the concept of statement is
defined as the expression of a thought in a sentence, and thus conceptually dependent
upon the concept of sentence, one has that the concept of assertion−"a statement
that one strongly believes to be true"−is conceptually dependent upon the concept
of sentence. Therefore, if we know how to formalize a sentence in a natural language
into a sentence in a formal language then we do know how to formalize an assertion.
In order to do that, one endows the formal language L∗ with infinitely many m-place
predicate letters

Pm, Qm, Rm, Pm
1 , Q

m
1 , R

m
1 , . . . , P

m
j , Q

m
j , R

m
j , . . . , (2.13)

for all m, j ∈ N. Having introduced that, one has that a 0-place predicate letter
stands for the formalization of an entire sentence in a natural language. Why do we
need the latter definition to construe the conception of sentence in L∗? To answer
this question, we are in need of proper elucidations.

So far, we have introduced the alphabet of the formal language L∗; but, how
should we be intuitively understanding such an alphabet then? As far as the author
of this thesis can see, the constants and variables, which have been defined in (2.7)
and (2.8) respectively, play the role of "letters" in L∗. Now, if we turn our attention
to the first component of the definition of the concept of sentence in a natural
language [English], that is, "a string of words", then one must define the notion of
word in the formal language L∗ so as to specify the notion of sentence in L∗. In
fact, one defines an atomic formula[word ] in L∗ as

ד = ,ג (2.14)

with ד and ג being a variable or a constant, and as

1ג∆ . . . ,mג (2.15)

with ∆ being16 a m-place predicate letter and each of ,1ג . . . , mג being a variable or
a constant.

Next, bearing in mind that the notion of sentence in a natural language is de-
fined as "a string of words expressing a thought and containing a verb" and con-
sidering that the notions of clause, phrase, and expressions in a natural language
are defined as "a string of words containing a verb and a subject", as "a string
of words, which is a part of a sentence", and as "a string of words" respectively,
then one has that the notion of sentence in a natural language is conceptually de-
pendent on the notion of clause, which, in turn, is conceptually dependent upon
the notion of expression. Likewise, the notion of sentence in a natural language is
conceptually dependent upon the notion of phrase, which, in turn, is conceptually
dependent upon the notion of expression. Furthermore, though not being a primi-
tive notion, one has that the notion of expression is the most fundamental one in the
sequences (sentence, clause, expression) and (sentence, phrase, expression). Hence,

16Here, we are using the Greek letter "∆" [delta] and the Hebrew letters gimel]"ג" ] and "ד"
[daleth] as metavariables, which, intuitively, are letters from a natural language [metalanguage]
being used to communicate the formal language.
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if one wants to conceptualize the notion of sentence in L∗ then it is necessary to
conceptualize the notion of expression in L∗. Actually, one can coherently define
the set of all formulae [expressions ] in L∗ by firstly including all atomic formulae
[words ] defined in (2.14) and (2.15). Next, by employing the connectives in (2.10)
as "binding rules", one also includes

¬$, $ ∧ ϑ, $ ∨ ϑ, $ → ϑ, $ ↔ ϑ, (2.16)

as formulae, with $ and ϑ being formulae in L∗. In so doing, one sets the rules
[syntax ] under which one can construct a string of atomic formulae ["a string of
words"] in L∗. Moreover, by invoking (2.9), one also includes∧

υ$,
∨

υ$, (2.17)

as formulae in L∗, with υ being a variable and $ being a formula in L∗. Withal,
how can a sentence be properly conceptualized in L∗ ? To answer this question,
we also turn our attention toward to the second component of the definition of the
notion of sentence, that is, "a string of words expressing a thought (. . .)". So, we
consider the following clause in a natural language[English]:

"For a sufficiently low auto-activation of the pluripotent network, one has that
Semrau-Huang’s model yields a stable equilibrium which resembles the ectoderm-
like state."

Further, one can conveniently formalize the latter clause into a L∗-formula as∨
aP (P 1aP ∧Q1aP )→

∨
z(R1z ∧R2zα), (2.18)

with the following dictionary:

P 1: . . . is an auto-activation of the pluripotent network;

Q1: . . . is sufficiently low;

R1: . . . is a stable equilibrium of Semrau-Huang’s model;

R2: . . . resembles . . . ;

α: the ectoderm like-state.

Now, if we consider the L∗-formula

(R1z ∧R2zα), (2.19)

taken from (2.18), then we have the following translation for (2.19):

"it is a stable equilibrium of Semrau-Huang’s model and it resembles the ectoderm-
like state".
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Thereby, the latter is not a sentence in the respective natural language [English],
seeing that there is no expression of a thought therein. Or rather, there is no expres-
sion in that, to which the pronoun "it" can refer. Intuitively, it is tantamount to not
having anything to put in place of "it" about which one can think. Actually, one can
think of it as if one had gotten stuck at the act of reading, being unable to perform
the act of thinking, which is prior to, and necessary for the act of judging. So, one
cannot judge the phrase "it is a stable equilibrium of Semrau-Huang’s model and
it resembles the ectoderm-like state" because one cannot advance any truth-value
thereto. Therefore, there has been referred to no structure in (2.19) to which "it"
belongs. In this regard, one has that the occurrence of the variable z-playing the
role of "it"-in (2.19), is said to be free.

Now, if we draw upon the latter elucidations then we can conclude that the clause

"For a sufficiently low auto-activation of the pluripotent network, one has that
Semrau-Huang’s model yields a stable equilibrium which resembles the ectoderm-
like state.",

is a sentence in English, given that it undoubtedly expresses a thought. Does the
latter rationale shed light on the conceptualization of a sentence in a formal lan-
guage? Intuitively, knowing the structure over which variables range, is a necessary
condition for the judging agent to think about what is being stated, so that she
can advance a truth-value to it. As we see in (2.18), the variables z, aP do not
occur freely therein. Actually, their occurrence in (2.18) is said to be bound, which,
in turn, motivates the definition of a sentence in L∗ as a L∗-formula in which all
variables occur boundedly. In so doing, one captures, with the latter formalized
notion of sentence, the two essential components of the definition of the notion of
sentence in a natural language, that is, "a string of words" with the "expression of
a thought".

So, as we now know that the clause

"For a sufficiently low auto-activation of the pluripotent network, one has that
Semrau-Huang’s model yields a stable equilibrium which resembles the ectoderm-
like state.",

is indeed a sentence then we can wonder whether or not it is an assertion. In
fact, if we presuppose that the judging agent and the modelling agent of Semrau-
Huang’s model would assure that it is definitely the case then, bearing in mind the
empirical notion of judgment, that is, a response to an empirical process, one has
that

`Ψ AOEi1 , (2.20)

with i1 ∈ N and

AOEi1 :
∨

aP (P 1aP ∧Q1aP )→
∨

z(R1z ∧R2zα), (2.21)

ought to be regarded as a property of the observation OE being expressed in the
formal language L∗, and being solely stipulated by empirical evidences. Moreover, as
we have said earlier in this thesis, `Ψ symbolizes that a mental activity has occurred
leading the judging agent to an assertion, which, in essence, is entirely predicated
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upon knowledge of the results of the performed experiments. Hence, if we intend to
evaluate the model M with respect to the set of observations O then we must be
able to determine whether or not the modelM really generates the property AOEi1
shown in (2.21). However, if we intend clarifying what we mean with the modelM
generating the property AOEi1 then we need to understand how we can determine the
truth-value of AOEi1 in L∗.

First of all, as variables and constants range over a set of non-logical objects then
one has that the structure over which they range, does have an influence upon the
truth-value of sentences in the first-order language L∗, that is, a L∗-sentence may
be true in one structure and false in another one. So, the latter remark leads us to
the conception of L∗-structure, or rather, the semantics of the formal language L∗.
In this thesis, we consider the structure

(R+; 0, 1,+, · , <), (2.22)

with 0, 1,+, · denoting the arithmetic relations, R+ := {w ∈ R : w ≥ 0}, and <
representing the total order in R. Now, bearing in mind the primitive notion of
truth in the Fregean logic as an assignment [objective] of a quality [truth-value] to
an assertion A, and that words, in a natural language, are the primitive units of
meaning, one has that if one stipulates how one interprets the atomic formulae in
L∗ [L∗-words ] then one knows how to convey meaning to all L∗-formulae, and, in
particular, to all L∗-sentences [formalized assertions ]. In so doing, one can naturally
extend the semantic assignment on L∗ to a truth condition on L∗, which, in turn,
enables us to semantically deduce the truth-value of a L∗-formula and, in particular,
of a L∗-sentence [formalized assertions ]. In fact, let CL∗ , VL∗ , PmL∗ , Rm, and P(0)

L∗ ,
denote the set of all constants, variables, m-place predicate letters, m-ary relations,
with m ∈ N>0, and 0-place predicate letters respectively. So, one has that

cש : CL∗ → R+

מ 7→ ,(מ)cש

and

vש : VL∗ → R+

צ 7→ ,(צ)vש

and

P,mש : PmL∗ → Rm

ק 7→ ,(ק)P,mש

and

P,0ש : P0
L∗ → {0, 1}
ק 7→ ,(ק)P,mש
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represent a semantic assignment on L∗ by which P,0ש assigns a truth-value to each
0-place predicate letter in P0

L∗ , that is, 0 [false] or 1 [true]. As for the latter semantic
assignment, for example, one has that the Dedekind-Peano axioms are formalized
as 0-place predicate letters, to which 1 [true] is assigned. Having done that, one
can extend such a semantic assignment to a truth-condition on L∗ by describing it
firstly on the L∗-primitive formulae. In fact, one defines that

| ד = ג |R+= 1 (2.23)

if and only if,
(ד)iש = (ג)jש (2.24)

with
,ד ג ∈ CL∗ ∪ VL∗ ,

and with i, j ∈ {c, v} being the respective indexes; and that

| 2ג1ג∆ . . . mג |R+= 1, (2.25)

if and only if,
,(1ג)i1ש〉 ,(2ג)i2ש . . . , 〈(mג)imש ∈ ,(∆)P,mש (2.26)

with ∆ ∈ PmL∗ ,
i1ג , i2ג , i3ג , . . . imג ∈ CL∗ ∪ VL∗ ,

and with i1, i2, . . . , im ∈ {c, v} being the corresponding indexes. Let ΣL∗ denote
the set of all L∗-formulae. So, if one draws upon (2.25) and (2.26), then one can
naturally extend such a truth-condition to ΣL∗ as shown in [32, p. 104]. Indeed, for
all $,ϑ ∈ ΣL∗ , one has that

| |R+ : ΣL∗ → {0, 1}

must satisfy that
| ¬$ |R+= 1, (2.27)

if and only if
| $ |R+= 0; (2.28)

and that
| $ ∧ ϑ |R+= 1, (2.29)

if and only if,
| $ |R+= 1 =| ϑ |R+ ; (2.30)

and that
| $ ∨ ϑ |R+= 1, (2.31)

if and only if,
| $ |R+= 1 or | ϑ |R+= 1; (2.32)

and that
| $ → ϑ |R+= 1, (2.33)

if and only if,
| $ |R+= 0 or | ϑ |R+= 1; (2.34)

106



Chapter 2. A systematic approach to the evaluation of phenomenological
mathematical models 107

and that
| $ ↔ ϑ |R+= 1, (2.35)

if and only if,
| $ |R+=| ϑ |R+ ; (2.36)

and that
|
∧

υ$ |R+= 1, (2.37)

if and only if,
| $ |R+= 1, (2.38)

independent upon the variable assignment ;vש and that

|
∨

υ$ |R+= 1, (2.39)

if and only if,
| $ |R+= 1, (2.40)

for some variable assignment .vש But, if we know how to determine the truth-value
of a L∗-formula, in particular, of a L∗-sentence [e.g. mathematical assertion] then
we can now clarify what we mean with the modelM generating the property AOEi1
shown in (2.21).

2.6 Models and the generation of observational prop-
erties

Firstly, rigorously speaking, the modelM is indeed a set of model instances, i.e.

M = {Mλ : λ ∈ Λ}, (2.41)

with Λ representing the parameter space. So, intuitively, relying upon (2.41), and
invoking that

`Ψ AOEi1 , (2.42)

one has that checking whether or not the model M generates the property AOEi1
means that we must show whether or not there exists λ[OE] ∈ Λ such that

AOEi1 ∈ A
[
Mλ[OE ]

]
, (2.43)

and that
| AOEi1 |R+= 1, (2.44)

with A[Mλ[OE ]] denoting the set of all formalized mathematical assertions on the
modelMλ[OE ]. In this regard, we are then entitled to write that

` AOEi1 , (2.45)

with "`" symbolizing the Fregean’s token for the assertoric force. Hence, one has
that ⋃

λ∈Λ

A[Mλ] ⊂ ΣL∗ . (2.46)

107



108
Chapter 2. A systematic approach to the evaluation of phenomenological

mathematical models

But, what is actually the essence of Mλ[OE ] generating the property AOEi1 for
some λ[OE] ∈ Λ? If we draw upon (2.21) and upon the conditions (2.15), (2.33),
(2.34), (2.39), and (2.40), then we need to decide whether

| P 1aP ∧Q1aP |R+= 0 (2.47)

independent upon the choice for 17 ש
Mλ[OE ]
v (aP ) ∈ R+, or

| R1z ∧R2zα |R+= 1 (2.48)

for some ש
Mλ[OE ]
v (z) ∈ R+. Or rather, one must decide whether

ש
Mλ[OE ]
v (aP ) /∈ ש

Mλ[OE ]

P,1 (P 1), (2.49)

or
ש
Mλ[OE ]
v (aP ) /∈ ש

Mλ[OE ]

P,1 (Q1), (2.50)

independent upon the choice for ש
Mλ[OE ]
v (aP ) ∈ R+; or

ש
Mλ[OE ]
v (z) ∈ ש

Mλ[OE ]

P,1 (R1), (2.51)

and 〈
ש
Mλ[OE ]
v (z), ש

Mλ[OE ]
c (α)

〉
∈ ש

Mλ[OE ]

P,1 (R2), (2.52)

for some ש
Mλ[OE ]
v (z), ש

Mλ[OE ]
c (α) ∈ R+. However, if we try to work it out from

(2.49) to (2.52), by only building on the semantics of the formal language L∗, then
(2.47) is undecidable. But, why is it undecidable? In fact, For example, the 1-place
predicate letter Q1 has an unary relation as its semantic value, but, whichever the
variable assignment ש

Mλ[OE ]
v is, one cannot determine the truth-value of Q1aP ["the

auto-activation of the pluripotent network is sufficiently low "] by working out the
semantic values of connectives and quantifiers in the formal language L∗, without
having knowledge of the mathematical structure [Dynamical system] underlying it.
Indeed, we must clarify what we mean with "being sufficiently low". To quote from
Dr. Jules Molk in [61]:

The definitions should be algebraic and not only logical. It does not suffice to
say: ‘A thing exists or it does not exist’. One has to show what being and not being
mean, in the particular domain in which we are moving. Only thus do we make a
step forward.

So, the latter quotation, actually taken from [3, p. 13], is fundamental to delimiting
the domain of logic in our rational approach. In fact, mathematical assertions do
have meaning on their own. Regarding the L∗-formula Q1aP ["the auto-activation of
the pluripotent network is sufficiently low "], one has to rescale the dynamical equa-
tions of the modelMλ[OE ] so as to precisely define "sufficiently low". In sum, one
cannot determine the truth-value of AOEi1 with respect toMλ[OE ] by solely using a
proof semantic-based argument18 [semantic proof ]. Hence, it means that generation

17Here, we adopt a notation for the variable assignment with which we accentuate that it is in
relation to the modelMλ[OE ].

18By means of working out the semantic values of connectives and quantifiers.
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of the property AOEi1 by the modelMλ[OE ] must be shown by drawing upon the rel-
evant properties ofMλ[OE ], or equivalently, the property AOEi1 must be constructed
from A[Mλ[OE ]]. So, the generation of a property by a model has an intuitionistic
account rather than a classical account in our interpretation, that is,

AOEi1 ∈ A
[
Mλ[OE ]

]
(2.53)

holds, for some λ[OE] ∈ Λ, if and only if there exist

A
Mλ[OE ]

i2
, A
Mλ[OE ]

i3
, . . . , A

Mλ[OE ]

im
∈ A

[
Mλ[OE ]

]
, (2.54)

with
` AMλ[OE ]

il
(2.55)

for all l ∈ {2, 3, . . . ,m}, such that

A
Mλ[OE ]

i2
, A
Mλ[OE ]

i3
, . . . , A

Mλ[OE ]

im
` AOEi1 . (2.56)

Now, what do we mean with (2.56)? It means that if we want to show that the
property AOEi1 is generated by the modelMλ[OE ] then it is necessary and sufficient to
show that there is a formal proof ofAOEi1 with assumptions [sentences ] inA

[
Mλ[OE ]

]
.

In this case, if (2.56) holds then we are entitled to write that

` AOEi1 , (2.57)

or equivalently,
AOEi1 → >, (2.58)

which, in turn, means that AOEi1 is a tautology on the modelMλ[OE ]. Hence, under
(2.56), if we invoke the definition of A

[
Mλ[OE ]

]
then we are entitled to write that

AOEi1 ∈ A
[
Mλ[OE ]

]
, (2.59)

so one can say that knowledge of the modelM with respect to the observation OE
has been gained indeed. Now, if for all λ ∈ Λ one has that

¬AOEi1 ∈ A [Mλ] , (2.60)

and that
| ¬AOEi1 |R+= 1, (2.61)

then AOEi1 is said to be a contradiction onM, that is,

` ¬AOEi1 , (2.62)

or equivalently,
⊥ → AOEi1 . (2.63)

But, what is a formal proof [syntactic proof ]? It is a chain of reasoning whose
steps are fully determined by the rules of inferences introduced in [25, 40], which
ones are described as follows.
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$ ϑ

$ ∧ ϑ ∧ -intro

$ ∧ ϑ

$ ∧ -Elim (1)

$ ∧ ϑ

ϑ ∧ -Elim (2)

[$]

ϑ

$ → ϑ → -Intro

$ $ → ϑ

ϑ → -Elim

$

$ ∨ ϑ ∨ -Intro (1)

ϑ

$ ∨ ϑ ∨ -Intro (2)

[$] [ϑ]

ζ ζ $ ∨ ϑ

ζ ∨ -Elim

[$] [$]

ϑ ¬ϑ

¬$ ¬ -Intro

[¬$] [¬$]

ϑ ¬ϑ

$ ¬ -Elim

[$] [ϑ]

ϑ $

ϑ↔ $ ↔ -Intro

$ $ ↔ ϑ

ϑ ↔ -Elim (1)

ϑ $ ↔ ϑ

$ ↔ -Elim (2)

∧[υ/ג]$
υ$

∧
-Intro

∧
υ$

[υ/ג]$
∧

-Elim

∨[υ/ג]$
υ$

∨
-Intro
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[[υ/ג]$]

ϑ
∨
υ$

ϑ
∨

-Elim

ג] = [ג
... = -Intro

[υ/ד]$ ד] = [ג

[υ/ג]$ = -Elim (1)

[υ/ד]$ ג] = [ד

[υ/ג]$ = -Elim (2)

Provided that ,ד ג ∈ CL∗ , ג occurs in no undischarged assumption in the proof of
[υ/ג]$ in

∧
-Intro, and that ג only occurs in the discharged assumption [[υ/ג]$] in

the proof of ϑ in
∨
-Elim. So, one has that the first-order language L∗ together

with the aforesaid rules of inference is said to be a formal system. Furthermore,
in order to eschew obfuscation19, it must be clear that we are availing ourselves of
the intuitionistic notion of truth so as to understand the generation of the prop-
erty AOEi1 -solely stipulated by empirical evidences-by the modelMλ[OE ], but we do
not make any reference to intuitionistic logic in this thesis. Indeed, our rational
approach is entirely based on the Fregean logic [classical logic]. However, are we
aimed at providing formal proofs in this thesis? No, we are not. Actually, we have
chosen a formal language to communicate our rational approach so as to avoid any
misunderstanding and, more importantly, to be clear about the way in which we are
reasoning through the composition of the proposed methodology. To quote from Dr.
Christian S. Calude in [7]:

“ An informal (pen-on-paper) proof is a rigorous argument expressed in a mix-
ture of natural language and formulae (for some mathematicians an equal mixture
is the best proportion) that is intended to convince a knowledgeable mathematician
of the truth of a statement, the theorem. Routine logical inferences are omitted.
“Folklore” results are used without proof. Depending on the area, arguments may
rely on intuition. Informal proofs are the standard of presentation of mathematics in
textbooks, journals, classrooms, and conferences. They are the product of a social
process.”

So, as described in the latter quotation, we will be mostly performing informal
proofs throughout this thesis. In sum, as for the proposed models, let O denote an
observation, so we need to determine whether or not

AO ∈ A
[
Mλ[O]

]
(2.64)

for some λ[O] ∈ Λ, which, in turn, demands that we find a rational strategy that en-
ables us to reduce a continuous-based search to a discrete-based search-an algorithmic
search.

19Given that the author of this thesis is not an expert on the topics involved herein.
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2.7 An algorithmic approach: the scenario space,
the primitive scenario, the knowledge-transformation
Π-functions, and theM-qualitative graph

To begin with, although the parameter space Λ can be a subset of an infinite-
dimensional space, we take Λ ⊂ RN with N ∈ N>0. Next, denote the modelM with
fixed parameter setting λ ∈ Λ byMλ. Let A[Mλ] denote a formalized mathematical
assertion20 on Mλ [e.g. "Mλ has 1 steady state"; "Mλ has 2 steady states"; . . .;
"Mλ has 18 steady states"; "Mλ has no periodic orbits"; "If the autoactivation
of the endoderm-network (ectoderm network) divided by two times their respective
degradation rates is greater or equal than their respective threshold concentrations
then there is at least one stable steady state"], that is, A[Mλ] is a sentence in L∗.

Let A [Mλ] be the set of all assertions that can be made on the model instance
Mλ. Then, let A denote the set of relevant aspects of the model M, i.e., the set
of mathematical assertions on the modelM, which, in turn, are applicable to each
model instance in the set

{Mλ : λ ∈ Λ} .

Thereby, by definition, one has that

A ⊂
⋂
λ∈Λ

A[Mλ] ⊂ ΣL∗ . (2.65)

But, to whom is A relevant? Indeed, such a set of relevant aspects A of the
modelM is solely stipulated by the judging agent. In this case, one can naturally
define a binary relation ’∼A’ on Λ× Λ. In fact, for λ, λ̃ ∈ Λ, one has that

λ ∼A λ̃ (2.66)

if and only if
| A[Mλ] |R+=| A[Mλ̃] |R+ , (2.67)

for all A ∈ A. Having defined that, we assert that it is not difficult to demonstrate
that the binary relation defined in (2.66) is actually an equivalence relation, i.e.
being reflexive, symmetric and transitive. In so doing, one denotes

[λ] := {λ̃ : λ̃ ∼A λ} (2.68)

as the equivalence class of each λ ∈ Λ.
But, how can we suitably interpret [λ]? In fact, if we consider that we have

intuitively defined a scenario as a description of some of the model’s properties
[mathematical assertions ] with respect to a particular question [e.g. "Does the
model generate five steady states?"] then the space SCM of all possible scenarios of
the modelM can be defined as

SCM := Λ�∼A (2.69)

20Although some examples are being provided in a natural language [English], one has that
A[Mλ] must be thought as a L∗-sentence.
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Figure 2.1: This figure has been taken from [57]. The act of proving[proof ] precedes
the act of judging the assertion as true. The non-empirical notion of judgment
can only be understood from a first-person perspective. Indeed, anyone who has
gone through the proof by herself, according to Dr. Gottlob Frege, will undoubtedly
acknowledge the truth of the assertion.

with
Λ�∼A := {[λ] : λ ∈ Λ} (2.70)

representing the quotient space, that is, the set of all equivalence classes of Λ with
respect to ∼A. Let

q : Λ→ Λ�∼A
λ 7→ [λ]

denote the canonical map. Consistent with (2.69), one defines

scMλ := q(λ), (2.71)

for all λ ∈ Λ. So, one has that a scenario scMλ consists of all λ’s for which the
relevant aspects have the same truth-values on the respectiveMλ’s [e.g. "Mλ has
five steady-states" is true; "Mλ has three stable steady states" is false; "Mλ has
no periodic orbit" is false, . . .]. Hence, one has that

SCM =
{
scMλ : λ ∈ Λ

}
(2.72)

is another representation for the scenario space SCM.
By construction, one has that assertions on a specific modelMλ lead to assertions

on a specific scenario scMλ . Moreover, if an assertion A ∈ A is true or false for a
specific λ0 ∈ [λ], then it must be true or false for any representative λ̂0 ∈ [λ],
respectively. Therefore, for all λ ∈ Λ, one has that A[scMλ ] is well-defined for any
A ∈ A used to define ∼A.

Now, let λ0 ∈ Λ and let scMλ0 be the respective scenario, that is, the respective
equivalence class in SCM. So, let

Ξ[scMλ0 ] :=
{
A[scMλ0 ] : A ∈ A and A→ >

}
(2.73)
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denote the set of relevant aspects in A of scMλ0 that are indeed true, and let

Ξ̂[scMλ0 ] :=
⋂

λ∈scMλ0

A[Mλ] (2.74)

symbolize the set of all formalized mathematical assertions on scMλ0 , while

Ξ[scMλ0 ] :=

A ∈ Ξ̂[scMλ0 ] :
∨

ΓA⊂Ξ[scMλ0
]

ΓA ` A

 (2.75)

represents a subset of Ξ̂[scMλ0 ] consisting of all formalized mathematical assertions on
scMλ0 that can be formally proved with assumptions in Ξ[scMλ0 ]. Hence, by definition,
one has that

A→ >, (2.76)

for all A ∈ Ξ[scMλ0 ] and that

Ξ[scMλ0 ] ⊆ Ξ[scMλ0 ] ⊂ Ξ̂[scMλ0 ] ⊂ ΣL∗ . (2.77)

Next, for q ∈ N>0, let

Ai1 [sc
M
λ0

], Ai2 [sc
M
λ0

], . . . , Aiq [sc
M
λ0

] ∈ Ξ̂[scMλ0 ] (2.78)

denote assertions on scenario scMλ0 solely designed by the mathematical analysis
of the model M. Suppose that the assertions on scMλ0 in (2.78) are indeed true.
Consistent with the Fregean notation, one has that

` Ai1 [scMλ0 ], ` Ai2 [scMλ0 ], . . . , ` Aiq [scMλ0 ] (2.79)

represent the respective correct judgements. But, mathematically speaking, what
do we actually mean with (2.78) and (2.79)? As illustrated in Figure 2.1, it means
that the judging agent, the one who mathematically analyses the modelM, proposes
assertions on the scenario scMλ0 ; and this act of asserting is followed by the act of
proving, which ends up in the act of judging the assertions in (2.78) as true ones (or as
false ones). Under a non-empirical notion of judgment, that is, an acknowledgement
of the truth of an assertion, one has that ’the act of judging is the very act of
knowing ’ as literally stated by Dr. Martin Löf in [55]. Hence, one can say that
the correct judgements [mathematical theorems ] in (2.79) are the objects of our
knowledge as depicted in Figure 2.2. In this regard, we can say that the correct
judgements in (2.79) constitute some of the properties of the scenario scMλ0 , and we
are then entitled of making the claim that we have relevant knowledge21 of scenario
scMλ0 . But, why relevant? In fact, ’having relevant knowledge of scenario scMλ0 ’ can
only be apprehended from the first-person perspective seeing that the judging agent
is the one who performs the mathematical analysis of the model so he stipulates by
himself what is relevant to know therefrom.

If we recall that we aim to provide a rational strategy for the evaluation of a
phenomenological mathematical model and that a scenario is meant to be the math-
ematical counterpart of an observation provided by the target system, then we need

21We have defined ’knowledge’ as a justified belief.
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to clarify the rationale of such an evaluation. To begin with, to what extent can a
model be regarded as a successful representation of the target system? In order to
answer this question, we build on the analytical framework introduced in [39]. In
fact, we regard similarity and adequacy as the two test-hypothesis so as to evaluate
a model. As for similarity, we quote from Dr. Melissa Jacquart in [39]:

“For Weisberg, evaluation of the similarity-relation hypothesis is about assessing
the "goodness of fit" between the model and the target system. The aspects of this
evaluation are captured through the model’s construal—the relevant intentions of
the modeller. Recall, the construal of a model is composed of four parts: assignment,
scope, and two kinds of fidelity criteria. Assignment and scope track how the real-
world phenomena are intended to be represented in the model. The fidelity criteria
provide the standards modellers use to evaluate a model’s ability to represent the
phenomena (...). On this view, similarity assessment is a central component to fit.
For a model to fit, and therefore be successful, it must be grounded in the similarity
relation.”

Hence, we can conclude from the later quotation that Dr. Michael Weisberg’s ac-
count of similarity, see [105], draws our attention to the intentionality and to the
third-person perspective, as we discussed earlier. Why? Despite the fact that a phe-
nomenological mathematical model is a product of a subjective experience of the
modeling agent, an evaluation of some of the choices that she makes when creating
such a mathematical representation, can only be apprehended from a third-person
perspective by means of empirical evidences. Furthermore, as far as the author of
this thesis can see, Dr. Michael Weisberg argues that the intentions of the modeling
agent stipulates how the similarity-hypothesis ought to be tested. So, if the math-
ematical representation, that is, the model M itself, is similar enough to the target
system ’for the purpose of explaining a set of observable properties thereof’ then
we say that the similarity-hypothesis is true. As for adequacy, we quote from Dr.
Wendy Parker in [65]:

“In order to argue that we have confirmed or disconfirmed such an adequacy hy-
pothesis, we will need to (i) determine what we are likely to observe if it is true that
the model is adequate for the purpose(s) of interest and then (ii) check how well
what is actually observed fits with what we are likely to observe if the model is ad-
equate. If what is actually observed fits well enough, then the observation confirms
the hypothesis that the model is adequate for the purpose(s) of interest.”

So, we can draw from the later quotation that, if for each observation of interest
generated by the target sytem, there is a scenario whose properties fit the properties
of the respective observation, then we say that the modelM is ’adequate for the pur-
pose of explaining a given set of properties of the observations formed by the target
system’. More specifically, being adequate means whether or not the model is able
to yield correct information about the target system concerning specific phenomena
of interest. So, if this criterion is fulfilled then we say that the adequacy-hypothesis is
true. In this case, one has that such scenarios are said to be similar to the respective
observations. Consistent with an early notation, for λ ∈ Λ one has that

scMλ ∼ O (2.80)
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betokens that scenario scMλ is similar [∼] to observation O. Moreover, if the
similarity-hypothesis and the adequacy-hypothesis are true then we regard the model
as a reliable representation of the target system. What should we be emphasizing
in the later test-hypotheses? In fact, if we want to understand them, then we need
to acknowledge the empirical notion of judgment as a necessary condition for us to
do that. In this regard, we regard a judgment as a mental activity in response to
an empirical process ; which, in fact, can only be apprehended from a third-person
perspective by means of empirical evidences.

Now, let
Ξ[O] (2.81)

denote the set of all relevant properties of an observation O imposed by themodelling
agent. Thereby, one can ’translate’22 the adequacy-hypothesis as the ’formula’∧

O∈OTS

∨
scMλ ∈SC

M

Ξ[O] ⊆ Ξ[scMλ ]↔ scMλ ∼ O, (2.82)

with OTS symbolizing the set of all observations of the target system. But, what
do we mean with Ξ[O] ⊆ Ξ[scMλ ]? In fact, as we have acknowledged earlier in this
thesis, a phenomenological mathematical model is inherently psychological with each
of its elements [e.g. biochemical parameters ; concentration thresholds ] and the re-
lations among them having a specific intention. The latter manifests itself in the
model with the expression of judgments [e.g. "If the concentration threshold of
the endoderm-network decreases for a sufficiently low autoactivation of the pluripo-
tent network, then the model has an equilibrium that resembles the endoderm-like
state."]. Despite being expressed mathematically, those judgements are essentially
psychological seeing that their judgeable contents [assertions ] are solely stipulated by
empirical evidences. Hence, one can write

`Ψ AOi1 , `
Ψ AOi1 , . . . , `

Ψ AOiq̃ (2.83)

such that
Ξ[O] =

{
AOi1 , A

O
i2
, . . . , AOiq̃

}
, (2.84)

with q̃ ∈ N>0, and AOih being the respective formalized mathematical assertion for all
h ∈ {1, 2, 3, . . . , q̃}, that is, the corresponding sentence in L∗. Moreover, by invoking
an aforesaid elucidation, one has that, in contrast with the Fregean judgment stroke
`, which is an assertive force, acknowledging the truth [objective] of an assertion,
the sign `Ψ represents a mental activity in reaction to an empirical process being
expressed in a mathematical assertion. In so doing, `Ψ symbolizes that a judgment
has been made based on empirical evidences.

So, if there exists λ0 ∈ Λ for which it is true that

Ξ[O] ⊆ Ξ[scMλ0 ] (2.85)

then
scMλ0 ∼ O. (2.86)

22Here, in order to promote a better readability, we mix a natural language [English] with
some logical symbols involving the sets Ξ[O], Ξ[scMλ0

], Ξ[scMλ0
], and Ξ̂[scMλ0

]. Nonetheless, we only
consider their elements [formalized mathematical assertions on the modelM] as being elements of
the formal language L∗.
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However, if we want to understand the essence of (2.85), then we need to invoke the
elucidations (2.53)-(2.63) with respect to the generation of an observational property
by the model M. In fact, (2.85) holds if and only if for each h ∈ {1, 2, 3, . . . , q̃}
there exists

A
(h)
i1

[scMλ0 ], A
(h)
i2

[scMλ0 ], . . . , A
(h)
iq(h)

[scMλ0 ] ∈ Ξ[scMλ0 ], (2.87)

for which, by definition, one has that

` A(h)
i1

[scMλ0 ], ` A(h)
i2

[scMλ0 ], . . . , ` A(h)
iq(h)

[scMλ0 ], (2.88)

or equivalently,

A
(h)
i1

[scMλ0 ]→ >, A(h)
i2

[scMλ0 ]→ >, . . . , A(h)
iq(h)

[scMλ0 ]→ >, (2.89)

such that
A

(h)
i1

[scMλ0 ], A
(h)
i2

[scMλ0 ], . . . , A
(h)
iq(h)

[scMλ0 ] ` AOih . (2.90)

with q(h) ∈ N>0. In this case, we are then entitled to write that

` AOih (2.91)

with
AOih ∈ Ξ[scMλ0 ]. (2.92)

In this regard, if
| Ξ[O] |< | Ξ[scMλ0 ] |, (2.93)

or equivalently, if
Ξ[scMλ0 ]\Ξ[O] 6= ∅ (2.94)

then the latter set, under the similarity-hypothesis, can be thought to account for
the results of new experiments. Nonetheless, drawing upon (2.82), if there is h0 ∈
{1, . . . , q̃} with(

Aih0 ∈ Ξ[O]
)
∧
(
Aih0 /∈ Ξ[scMλ0 ]

)
∧
(

Ξ[O]\
{
Aih0

}
⊆ Ξ[scMλ0 ]

)
, (2.95)

then one has that scMλ0 is not similar to the observation O. In the latter case,
how should we further proceed with the evaluation of the model? Or rather, how
should we keep searching for a scenario in the parameter space, similar [∼] to the
observation O? Intuitively, as one hypothetically has some relevant knowledge of
the scenario scMλ0 then, under the hypothesis that it does not have the property Aih0 ,
the judging agent, by means of mathematical analysis, might suitably construct a
function Π1 on the parameter space Λ, namely

Π1 : Λ→ Λ

λ 7→ Π1(λ)

where

Π1(λ) =

{
λ if λ /∈ [λ0],

λ1 if λ ∈ [λ0],
(2.96)

with λ1 ∈ Λ being a choice determined by the performed mathematical analysis.
Actually, in the framework of dynamical systems to which we shall turn ourselves
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Figure 2.2: This figure has been taken from [57]. The act of knowing as the very act
of judging so a correct judgment [mathematical theorem] is said to be the object of
our knowledge.

later in Chapter 4, λ1 ought to be thought as a point at which a bifurcation has
occurred thus, consistently, one has that Π1 must be conditioned upon

[λ1] 6= [λ0].

Next, drawing upon (3.246), such a Π1-function on the parameter space Λ natu-
rally gives rise to a Π̄1-function on the scenario space, namely

Π̄1 : SCM → SCM

scMλ 7→ Π̄1[scMλ ]

provided that
Π̄1[scMλ ] := q ◦ Π1(λ), (2.97)

for all λ ∈ Λ. Now, if the judging agent can show that the scenario

Π1[scMλ0 ] := scMλ1 (2.98)

is similar [∼] to the observation O, that is,

Π1[scMλ0 ] ∼ O, (2.99)

then the ’search’ can stop at λ1.
More generally, suppose that there is a subset

{h1, h2, . . . , hm} ⊂ {1, 2, . . . , q̃} (2.100)

with hm < q̃ such that

Ξ[O]\ {Ah1 , Ah2 , . . . , Ahm} ⊆ Ξ[scMλ0 ], (2.101)

with
`Ψ Ah1 , `Ψ Ah2 , . . . , `Ψ Ahm , (2.102)

and ∧
s∈{1,2,...,m}

(
Aihs ∈ Ξ[O]

)
∧
(
Aihs /∈ Ξ[scMλ0 ]

)
, (2.103)

then, intuitively, for each s ∈ {1, 2, . . . ,m−1}, the judging agent, by means of math-
ematical analysis, might construct a Πs-function on the parameter space, namely

Πs : Λ→ Λ

λ 7→ Πs(λ)
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being conditioned upon
[λs] 6= [λr]

for all r ∈ {0, 1, . . . , s− 1}, such that

Πs(λ) =

{
λ if λ /∈ [λs−1],

λs if λ ∈ [λs−1],
(2.104)

with λs ∈ Λ being chosen according to the performed mathematical analysis, so that
the scenario

Π̄s[sc
M
λs−1

] := scMλs (2.105)

satisfies

Ξ[O]\
{
Ahs+1 , Ahs+2 , . . . , Ahm

}
⊆ Ξ[Π̄s[scMλs−1

]], (2.106)

with
`Ψ Ahs+1 , `Ψ Ahs+2 , . . . , `Ψ Ahm , (2.107)

and ∧
j∈{s+1,...,m}

(
Aihj ∈ Ξ[O]

)
∧
(
Aihj /∈ Ξ[Π̄s[scMλs−1

]]
)
. (2.108)

Thereby, by induction, for s = m− 1, one has that

Ξ[O]\ {Ahm} ⊆ Ξ[Π̄m−1[scMλm−2
]], (2.109)

and that (
Aihm ∈ Ξ[O]

)
∧
(
Aihm /∈ Ξ[Π̄m−1[scMλm−2

]]
)
, (2.110)

with
`Ψ Aihm . (2.111)

So, by building upon the same argument, if we bear in mind that the judging
agent hypothetically does know some relevant aspects of the scenario scMλm−1

, then
she might suitably construct a Πm-function on the parameter space Λ, namely

Πm : Λ→ Λ

λ 7→ Πm(λ)

conditioned on
[λm] 6= [λr],

for all r ∈ {1, 2, . . . ,m− 1}, such that

Πm(λ) =

{
λ if λ /∈ [λm−1],

λm if λ ∈ [λm−1],
(2.112)

with λm ∈ Λ being chosen when performing the mathematical analysis, such that
she can show that the scenario

Π̄m[scMλm−1
] := scMλm (2.113)
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Figure 2.3: Here, we have a cartoon in which one sees a suitable intuitive depiction
of the canonical map q. In fact, by definition, one has that the scenario space SCM
is discrete whereas Λ1, Λ2, Λ3, and Λ4 hypothetically represent the four main compo-
nents of the parameter space Λ. The other component of the parameter space is given
by a transition zone characterized by a lower dimensional layer Λc setting the fron-
tier among the main components. Each of the main components is being illustrated
as the union of mutually exclusive sets, which are thought to be entirely determined
by the inverse image of q−1. In fact, the subset q−1

Λ1
(scMλ0 ) = q−1(scMλ0 )

⋂
Λ1 consists

of parameters which generate the primitive scenario scMλ0 , i.e. the equivalent class of
λ0 of which λ0 is one of its representatives. As we see here, λ0 ∈ q−1

Λ1
(scMλ0 ). Further-

more, q−1
Λ1

(scMλ0 ) is being illustrated as a subset of Λ1 with the smallest volume so as
to emphasize the primitiveness of q−1(scMλ0 ). How does this minimality in the volume
representation of q−1

Λ1
(scMλ0 ) suit the intuitive purpose of expressing the primitiveness

of q−1(scMλ0 ) ? In fact, it accentuates its irreducibility and, more importantly, suf-
fices to depict the fact that such a set in the parameter space is apprehended to be
significantly constrained. Lastly, we see the qualitative path Πm ◦ . . . ◦ Π1(λ0) going
from λ0 ∈ Λ1 to λm ∈ Λ4 in the parameter space.
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is similar [∼] to the observation O, that is,

Π̄m[scMλm−1
] ∼ O, (2.114)

or equivalently,
Ξ[O] ⊆ Ξ[scMλm ]. (2.115)

Moreover, consistently, for each s ∈ {1, 2, . . . ,m}, one has that

Π̄s : SCM → SCM

scMλ 7→ Π̄s[sc
M
λ ]

with
Π̄s[sc

M
λ ] := q ◦ Πs(λ), (2.116)

for all λ ∈ Λ as depicted in Figure 2.4.
Now, what is the main hypothesis in the latter argument leading to the ’con-

struction’ of the scenario scMλm similar [∼] to the observation O? In fact, it has
been assumed that the judging agent does know relevant aspects of scenario scMλ0 .
So, the essence of our argument is to know whether or not the scenario scMλ0 gener-
ates all the observational properties in OTS, which, in turn, immediately turns our
attention to the ongoing question of this section, that is, how are the conception
order, the concept of primitive notion, the concept of judgment and the first-person
perspective fundamentally related to evaluation of phenomenological mathematical
models? First of all, in our intuitive construction, if we know scenario scMλ0 then
we can know scenario scMλ1 , which, in turn, by induction, implies that we can know
scenario scMλm . So, such a pattern resembles the conceptual order reflected by a
chain of concepts conceptually dependent upon each other. However, regarding our
intuitive construction, for l ∈ {1, . . . ,m}, it must be emphasized that, in no way
are we claiming that a necessary condition to have knowledge of scenario scMλl is to
have knowledge of scMl−1, but rather, if we have knowledge of scMl−1 then we can have
knowledge of scMλl with respect to a particular set of observational properties OTS.

Having said that, let P(A) := {Ξ : Ξ ⊂ A} denote the set of all subsets of A.
Then, one has that P(A) is a partially ordered set with the partial order being given
by the containment relationship, that is, (P(A),⊆). Now, if one defines

q̃ : SCM → P(A)

scMλ 7→ Ξ[scMλ ]

then, under the presumption that the judging agent has knowledge of some relevant
aspects of scMλ0 and under the assumption that it is not true that

scMλ0 ∼ O, (2.117)

and by drawing upon the same argument concerning the construction of the Π-
functions, one can consider the mapping

Π̂1 : q̃(SCM)→ q̃(SCM)

Ξ 7→ Π̂1 [Ξ]

with
q̃(SCM) :=

{
Ξ[scMλ ] ∈ P(A) : λ ∈ Λ

}
, (2.118)
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such that

Π̂1(Ξ) =

{
Ξ if Ξ 6= Ξ[scMλ0 ],

Ξ1 if Ξ = Ξ[scMλ0 ],
(2.119)

with
Ξ1 ⊆ Ξ[scMλ1 ], (2.120)

provided that
Π̄1[scMλ0 ] := q ◦ Π1(λ0) = scMλ1 , (2.121)

and that Π1 is being conditioned upon

[λ1] 6= [λ0].

But, How should we apprehend the Π̂1-mapping? In fact, Π̂1(Ξ) can only be
understood from a first-person perspective seeing that it is stipulated by the Π1-
function, which, in fact, is constructed on the basis of the mathematical analysis
performed by the judging agent. And what is the essence of the Π̂1-mapping? It is
indeed a knowledge-transformation mapping. Further in this thesis, without loss of
generality, we shall refer to the Π-functions as the actual knowledge-transformation
mappings. How should we understand the inequality (2.120)? Or rather, what are
the essential properties that such a mapping Π̂1 is thought to satisfy? In fact,

Π̂1(∅) = ∅, (2.122)

that is, if we have no knowledge of a scenario then we cannot extract any knowledge
from that. Next, one has that Π̂1 is monotonically non-decreasing, that is, for
Ξ1,Ξ2 ∈ q̃(SCM), if

Ξ1 ≤ Ξ2 (2.123)

then
Π̂1(Ξ1) ≤ Π̂1(Ξ2), (2.124)

which means that one ought to apprehend the inequality (2.120) as follows. In fact,
partial knowledge of the relevant aspects of Ξ[scMλ0 ] leads to partial knowledge of the
relevant aspects of Ξ[scMλ1 ]. So, (2.124) is an essential property to being acknowledged
seeing that it enables the judging agent to build a chain of knowledge-transformation

Π̂1, Π̂2, . . . , Π̂m (2.125)

with respect to the set of observational properties OTS.
Hence, if she succeeds in finding Π-functions with which, at each step, she ob-

tains close to total knowledge of the relevant aspects of the subsequent scenarios in
the chain, then she will be likely to decide whether or not an observational property
can be generated by the respective scenarios in the chain, which, in turn, reduces a
continuous search to an algorithmic search. But, what do the Π-functions stand for
in our philosophical approach? In fact, they are entirely constructed on the basis of
the judgements made by the judging agent. In addition hereto, the latter chain of
knowledge-transformation Π̂-mappings can be visualized in the parameter space as
a qualitative path generated by the respective Π-functions, as illustrated in Figure
2.3, or as a qualitative graph induced by the Π̄-functions as shown in (2.126).
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scMλ0
scMλ2

scMλ1

scM
λ̃1

scMλ

scM
λ̃2

Π̄1

Π̄∗1 Π̄3

Π̄2

Π̄∗2 Π̄∗3

(2.126)

So, the burden of proof is upon the judging agent to build suitable Π̄-functions
which will unveil scenarios that preserve those matching properties, and annihilate
those ones which contradict some of the properties describing the observations in
OTS. Further, provided that we are under the assumption that the judging agent
has total knowledge of the relevant aspects of scenario scMλ0 , one has that the sce-
nario scMλ0 seems to be more ’fundamental’ than the scenario scMλ1 , of which, under
Π1 and in view of (2.120), the judging agent has at least a partial knowledge of its
relevant aspects, and at most a total knowledge thereof. Therefore, one has that the
role of the scenario scMλ0 resembles the fundamental role of primitive notions in the
conceptual order. In fact, if we can conveniently define the concept of a primitive
scenario so that it somehow resembles the conceptual role of a primitive notion, that
is, being somehow irreducible, then one has that the scenario scMλ0 can be regarded
as a primitive one in our intuitive construction. Hence, intuitively, if an arbitrary
scenario scM ∈ SCM may be represented [decomposed ] as

scM = Π̄m ◦ Π̄m−1 . . . ◦ Π̄2 ◦ Π̄1[scMλ0 ], (2.127)

with
Π̄r+1 ◦ Π̄r (2.128)

denoting the composition of Π̄-functions for each r ∈ {1, 2, . . . ,m − 1}, m ∈ N>0,
scMλ0 being a primitive scenario, and Π̄r being defined in (2.116), then it seems that
our rational strategy offers a way in which we could shrewdly walk through the
scenario space SCM so as to test the adequacy-hypothesis. Moreover, consistent
with the definition (2.116), one has that

scM = scMλm . (2.129)

However, considering that a phenomenological mathematical model is supposed
to represent a target system, one has that the question is not whether or not one can
find the representation [decomposition] proposed in (2.127) for an arbitrary scenario
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in SCM , but whether or not, one can find scenarios in the scenario space that are
similar [∼] to the observations of interest in the target system. So, in this case, if we
know how to find a primitive scenario anywhere within the scenario space then we
might suitably shift it therein. In so doing, the shifting process is thought to reveal
scenarios which, in turn, might be regarded as the mathematical counterparts of the
respective observations. Therefore, perhaps, a better representation of (2.127) reads

scMλ0
Π̄1−→ scMλ1

Π̄2−→ scMλ2
Π̄3−→ . . .

Π̄m−2−→ scMλm−2

Π̄m−1−→ scMλm−1

Π̄m−→ scM. (2.130)

Lastly, as we see in the diagram (2.126), one has that

scM = Π̄3 ◦ Π̄2 ◦ Π̄1[scMλ0 ], (2.131)

and that
scM = Π̄∗3 ◦ Π̄∗2 ◦ Π̄∗1[scMλ0 ], (2.132)

which means that the representation [decomposition] in (2.127) is not necessarily
unique.

2.8 A concise description of the proposed evaluation

But, how do we intend applying this method to our analysis? First of all, we need to
understand the structure of the parameter space Λ ∈ RN (N ∈ N>0). Indeed, if we
now presuppose that two different parameter settings λ and λ̃ can presumably give
rise to different model’s properties, one has that there must be a lower dimensional
layer Λc ⊂ Λ to account for that. So, one has that there must exist Λc ⊂ Λ which
purportedly sets the frontier among the main components of the parameter space Λ.
But, why does the layer Λc ⊂ Λ have a lower dimension? Intuitively, Λc is thought
to form the interface among the main components of the parameter space. Indeed,
intuitively, for m ∈ N>0, one must have that

Λ = Λc ∪
m⋃
j=1

Λj, (2.133)

with Λc denoting the lower dimensional layer in Λ and with Λj representing the
main components of Λ for all j ∈ {1, 2, . . . ,m} such that

Λr ∩ Λs = ∅, (2.134)

for r 6= s and r, s ∈ {1, 2, . . . ,m}.
But, what are the main components of the parameter space? How can we ap-

prehend them? In fact, if we acknowledge that there are some primary aspects
[properties ] of the model M that are intrinsically determined by the mathemati-
cal formulation thereof [e.g geometrical aspects ], then it is reasonable to think that
those primary aspects cause the parameter space to form a kind of graphical struc-
ture whose nodes are thought to be given by the main components [Λ1, . . . ,Λm].
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Figure 2.4: This cartoon shows how the judging agent performs the algorithmic
search. In fact, with respect to some aspects that are prioritized, she stipulates the
primitive scenario scMλ0 . Further, if sc

M
λ0

is not similar [∼] to the target observation
O then, by means of mathematical analysis, she tries to fully identify the missing
aspects and the ones which contradict the target observation O. Upon doing so,
she performs a shift in the parameter space toward Π(λ0) = λ1, which corresponds
to a shift in the scenario space toward Π̄[scMλ0 ] = scMλ1 , which, in turn, generates
knowledge Π̂

[
Ξ[scMλ0 ]

]
of Ξ[scMλ1 ].
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Indeed, if we regard the main components in (2.133) as equivalent classes defined
by the set of parameter settings λ ∈ Λ for which those primary aspects have the
same truth-value, then we have also justified that the main components [Λ1, . . . ,Λm]
are actually mutually exclusive. Moreover, as we are interested in models that are
structural stable, that is, models for which small perturbations of a parameter set-
ting do not alter, in particular, the truth-value of those primary aspects, then we can
justify why the main components ["equivalent classes with respect to those primary
aspects"] in (2.133) must have non-empty interior, i.e.

Λ̊j 6= ∅, (2.135)

for all j ∈ {1, 2, . . . ,m}, which, in turn, implies that the structure arising from
the equality (2.133) indeed gives rise to a qualitative graphical representation of the
parameter space Λ that we conveniently call theM-qualitative graph as illustrated
in Figure 2.3.

In sum, to begin with, the judging agent must give a mathematical description
of the main components of the parameter space with respect to the set of primary
aspects. Thence, she must then consider relevant aspects of the model M so as to
test the adequacy-hypothesis. Of course, if we draw upon the same aforementioned
equivalence relation then the set of relevant aspects A, which, in fact, is thought to
contain the primary aspects, gives rise to other "sort of components" that we have
then defined as scenarios. The latter ones form the scenario space SCM which, by
definition, works as the counterpart of the set of target observations OT S . How to
proceed then? In fact, the judging agent must know which relevant aspects must
be prioritized in her pursuit of a scenario in the scenario space SCM that is similar
[∼] to the target observation O. For example, the relevant aspect being prioritized
might be the number of steady states. In this case, a scenario with the maximal
number of steady states will be the primitive scenario playing the role of a primitive
notion, being irreducible, seeing that it cannot be reduced to any scenario with more
steady states. So, finding a way in which one can fix such a primitive scenario in
any of the main components

Λ1, Λ2, Λ3, . . . , Λm (2.136)

of the parameter space is a challenge given to the judging agent. So, she must
assure that she knows as many relevant aspects as possible of a primitive scenario
in order to disregard it, or not, in her search for a scenario similar[∼] to the target
observation O. Regarding a primitive scenario, how should we then proceed in case
of missing aspects or aspects that contradict the target observation O? In fact, the
judging agent must suitably perform the mathematical analysis of the model M
so as to know how to shift scenarios in the scenario space SCM until the search is
finished, as illustrated in Figure 2.2. Lastly, it is important to stating that the
efficiency of the method is predicated upon the presupposition that one does not
need to be concerned about giving a detailed mathematical description of the lower
dimensional layer provided that it is not generic, thus not observable.

2.9 Conclusion

In the respective chapter, we have introduced a conceptual framework in which
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Frege’s judgment theory can be applied to the evaluation of phenomenological math-
ematical models. We started discussing that, along with the conceptual order, the
concept of primitive notion is fundamental to epistemology seeing that it provides a
way of defining concepts sequentially. The latter essentially stipulates our rational
strategy given that primitive scenarios play the role of primitive notions in our ap-
proach. So, intuitively, if scenarios are regarded as the counterparts of observations
then knowing the primitive scenarios of the model can potentially lead us to know
any scenario of the model, which means that we can potentially know whether or
not an observation is actually generated by the model.

Withal, there is no act of knowing whether or not a matching scenario has been
found on the scenario space without a judging agent to assert that. As the search
throughout the parameter space is determined by the judgments made by the judging
agent then one has that the first-person perspective is crucial to the evaluation
process. These judgements are actually executed by the knowledge-transformation
Π-functions, resulting in a chain of actions described by a qualitative graph on the
scenario space and by a qualitative path on the parameter space. Moreover, in
order to understand the essence of the knowledge-transformation Π-functions, one
needs to acknowledge the duality of the judging agent as a non-empirical ego and
as an empirical ego respectively. In fact, this duality must be accentuated when
distinguishing the two involved perspectives, that is, the first-person perspective
(the model as a mathematical object), and the third-person perspective (the model
as description of observational properties) concerning the logical and the empirical
notion of judgment.

Lastly, we would like to recognize that in the case of many models such a method-
ology is not necessary, but we do believe that our approach can have some value
in the evaluation of phenomenological mathematical models with many parameters,
in which structural properties are crucial to testing the adequacy of the model to
explain the target observations.
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Chapter 3

The analysis of Huang’s model

"Among the thousand-and-one
faces whereby form chooses to
reveal itself to us, the one that
fascinates me more than any other,
and continues to fascinate me, is
the structure hidden in
mathematical things."

Alexander Grothendieck

In this chapter, we will provide an analysis of Huang’s model by applying the
procedure introduced in Chapter 2. We shall see that the key point of our analysis
is to determine the possible qualitative behaviors of the nullclines of the model. In
fact, the analysis is performed as follows. First, we will give a suitable description of
the scenario space SCH of Huang’s model, which will enable us to give a graphical
description of the parameter space of the model itself, which, in turn, will be of
utmost importance to represent the qualitative graphical matrix of the model, or
better, the Huang’s qualitative graphical matrix.

Secondly, we will stipulate sufficient conditions so as to find the primitive scenar-
ios of the model, wherein we will demonstrate the existence of the maximal number
of steady states [equilibria]. Thirdly, we will perform linear stability analysis and we
will appeal to topological arguments by drawing upon the Poicaré-Bendixon Theo-
rem so as to determine the (in)stability of the found steady states in the respective
primitive scenarios.

This chapter is organized as follows. Firstly, we will provide a thorough descrip-
tion of Huang’s qualitative graphical matrix. Secondly, we will construct the prim-
itive scenarios thereof, wherein we will find the maximal number of steady states
that a scenario of the scenario space SCH of the model can generate. Lastly, we
will conclude this chapter by summarizing it and by providing a concise discussion
thereof.
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3.1 The qualitative graphical matrix of the model
Drawing upon Section 1.5, one has that the dimensionless dynamical equations of
Huang’s model read

dX

dt
= aX

Xn

θnX +Xn
+ b

1

1 + En
− kX,

dE

dt
= aE

En

θnE + En
+ b

1

1 +Xn
− kE,

(3.1)

with
X = X̂/θ, E = Ê/θ, θX = θ̂X/θ, θE = θ̂E/θ, (3.2)

and
t = t̂/τ, k = k̂τ, aX = τ âX/θ, aE = τ âX/θ, (3.3)

where θ > 0 and τ > 0 are the respective characteristic concentration and time.
Now, note that

dX

dt
≤ aX + b− kX, (3.4)

so if
X >

aX
k

+
b

k
(3.5)

then
dX

dt
< 0. (3.6)

Similarly, one has that if

E >
aE
k

+
b

k
(3.7)

then
dE

dt
< 0. (3.8)

Therefore, the interesting dynamics is confined in the rectangle :

(X,E) ∈
[
0,
aX
k

+
b

k

]
×
[
0,
aE
k

+
b

k

]
. (3.9)

3.1.1 The description of the nullclines GΨ1,n
and GΨ2,n

We now want to find the steady states of the model and perform Linear Stability
Analysis. To begin with, we limit ourselves to the steady states with X,E ≥ 0, as
these are biologically relevant. Let n ∈ N \ {0}. So, for the system (3.1), one can
define

g1,n(X) := kX − aX
Xn

θnX +Xn
,

g2,n(E) := kE − aE
En

θnE + En
,

(3.10)

and

hn(Z) := b
1

1 + Zn
, (3.11)

129



130 Chapter 3. The analysis of Huang’s model

Figure 3.1: Here, one sees the plot of g1,n in blue for the choices n = 4, θX = 0.3,
k = 1 and aX = 0.8; where g1,x,∞ = kX − aX .

Figure 3.2: Now, we see the plot of g1,n in blue for the choices n = 4, θX = 0.4535,
k = 1 and aX = 0.8.
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for all X,E,Z ≥ 0. If b > 0 then the function defined in (3.11) is invertible, whose
inverse reads

h−1
n (Z̃) =

(
b

Z̃
− 1

) 1
n

, (3.12)

for all Z̃ ∈ (0, b]. Next, bearing in mind that a steady state of (3.1) must satisfy

0 = aX
Xn

θnX +Xn
+ b

1

1 + En
− kX,

0 = aE
En

θnE + En
+ b

1

1 +Xn
− kE,

(3.13)

one can conveniently define
Ψ1,n := h−1

n ◦ g1,n, (3.14)

and
Ψ2,n := h−1

n ◦ g2,n, (3.15)

and
GΨ1,n

:= {(X,E) ∈ R2
+ : E = Ψ1,n(X)}, (3.16)

and
GΨ2,n

:= {(X,E) ∈ R2
+ : X = Ψ2,n(E)}. (3.17)

In this regard, one has that (X∗, E∗) ∈ R2
+ satisfies (3.13) if and only if

(X∗, E∗) ∈ GΨ1,n ∩GΨ2,n . (3.18)

Hence, determining the steady states of (3.1) entails to know how the nullclines
GΨ1,n and GΨ2,n behave, what boils down to the analysis of the functions g1,n(X)
and g2,n(X).

3.1.2 Geometric aspects as primary aspects of the model:
Huang’s qualitative graphical matrix (Hn [Ci,X , Cj,E])i,j

In fact, depending on n ∈ N, and the relations among the parameters aX , θX ,
and k, and analogously, among aE, θE and k, one has that either g1,n and g2,n

can exhibit the behaviors described in Figure 3.1, 3.2 and 3.3. That is, the
graph is not monotonically increasing and has a region where it is below zero; it
is not monotonically increasing but is non-negative, and the the case in which it is
monotonically increasing.

As we see in Figure 3.1, for n = 4, one has that the choice of parameters satisfy

θX <
aX
2k
, (3.19)

whilst, in the case of Figure 3.2, one has that

aX
2k
≤ θX ≤

aX
k
, (3.20)

and, for Figure 3.3, one has that

θX >
aX
k
, (3.21)
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Figure 3.3: In this plot of g1,n in blue, we have chosen n = 4, θX = 1, k = 1 and
aX = 0.8.

and these properties will be shown below.
However, Figures 3.1, 3.2 and 3.3 are representative for the behaviour of gi,n

(i = 1, 2) when n > 1. For n = 1, the behaviour is different. These are depicted in
Figures 3.4 and 3.5. In fact, one sees that in Figure 3.5, the parameters satisfy
the relation (3.21), while, in Figure 3.4, the respective choices obey the condition

θX ≤
aX
k
. (3.22)

But, how do we stipulate the conditions (3.19), (3.20), and (3.21) ? Are the re-
spective conditions necessary and sufficient for the corresponding behaviours shown
in Figures 3.1, 3.2, and 3.3 ? In order to answer the latter questions, one needs to
have a more detailed look at the functions g1,n and g2,n. Actually, we will analyse
g1,n given that the case with g2,n is similar.

First, by construction, we note that for any n ≥ 1, the graph of g1,n is below that
of f(X) = kX, and has the line Y = kX − aX as an asymptotic limit as X → +∞.
Conveniently, we denote the latter by g1,∞(X). Moreover, for n > 1, one has that

g′1,n(X) = k − naXθnX
Xn−1

(θnX +Xn)2
, (3.23)

which implies that

g′1,n(0+) := lim
h→0+

g1,n(0 + h)− g1,n(0)

h
= k, (3.24)

so the graph of g1,n is tangent to the line f(X) = kX at X = 0. If n = 1 then this
no longer holds. We shall discuss this special case separately.
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Lemma 3.1.1.

(i)
∧
n≥1

(
θX <

aX
2k

)
⇔ (g1,n(θX) < 0)

(ii)
∧
n≥1

(
θE <

aE
2k

)
⇔ (g2,n(θE) < 0)

(3.25)

Proof. (i) In fact, at X = θX , one has that

g1,n(θX) = kθX −
aX
2
. (3.26)

Thus,

θX <
aX
2k

(3.27)

if and only if

g1,n(θX) < 0. (3.28)

For (ii), on has that the proof is similar.

Now, if we draw on the fact that g1.n is a continuous function on (0,∞) and
right-continuous at X = 0, then for ε = |g1,n(θX)|

2
> 0 there exists δ(ε) > 0 such that

if X > 0 and |X − θX | < δ(ε) then

| g1,n(X)− g1,n(θX) |< ε, (3.29)

which implies that

g1,n(X) < g1,n(θX) +
| g1,n(θX) |

2
, (3.30)

which, in turn, implies that for θX < aX
2k

g1,n(X) < 0. (3.31)

So, there is a region in which g1,n(X) < 0. Moreover, one can prove the following
property.

Lemma 3.1.2.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒
(
g′1,n(θX) < 0

)
(ii)

∧
n≥2

(
θE <

aE
2k

)
⇒
(
g′2,n(θE) < 0

) (3.32)

Proof. (i)In fact, drawing on the expression (3.23), one has that for n ≥ 2 and
θX < aX

2k
:

g′1,n(θX) = k − naXθnX
θn−1
X

(θnX + θnX)2
< k − n aX

4θX
< 0. (3.33)

Similarly, one can show (ii).
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Corollary 3.1.3.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒

∨
0<xmax,n<θX

g′1,n(xmax,n) = 0

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒

∨
0<emax,n<θE

g′2,n(emax,n) = 0
(3.34)

Proof. (i) So, provided that g′1,n(X) is a continuous function on (0,∞) and right-
continuous at X = 0, if we draw upon the Intermediate Value Theorem [77, p. 93]
then (3.313) and Lemma (3.1.2) imply that there exists 0 < xmax,n < θX such that
g′1,n(xmax,n) = 0. Similarly, we can demonstrate (ii).

So, the latter property is consistent with the Figure 3.1 under condition (3.19),
seeing that xmax,n is the candidate to be the local maximum, which, in turn, leads
us to conjecture that the condition (3.19) is indeed sufficient for the behaviour of
g1,n(X) shown in the Figure 3.1.

To demonstrate that it is indeed true, one can proceed as follows. Let j ∈
R+ \ {0}. So, we note that

g1,n

(
θX
j

)
> 0⇔ 1 + jn

j
θX >

aX
k
, (3.35)

which guides us to the next result.

Lemma 3.1.4.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒

∨
j0,X>1

(
1 + j2

0,X

j0,X

θX >
aX
k

)

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒

∨
j0,E>1

(
1 + j2

0,E

j0,E

θE >
aE
k

) (3.36)

Proof. (i) In fact, there exists j0,X > 1 such that

1 + j2
0,X

j0,X

θX >
aX
k
⇒ θXj

2
0,X −

aX
k
j0,X + θX > 0. (3.37)

Define f(j) = θXj
2
0,X − aX

k
j0,X + θX . So, under θX < aX

2k
, one has that f(j) > 0 if

and only if

j < j
(−)
0,X :=

aX
k
−
√(

aX
k

)2 − 4θX

2θX
, (3.38)

and

j > j
(+)
0,X :=

aX
k

+
√(

aX
k

)2 − 4θX

2θX
. (3.39)

Therefore, as j(+)
0,X > 1 then one can choose j0,X > j

(+)
0,X > 1 such that f(j0,X) > 0.

The proof of (ii) is similar.
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Corollary 3.1.5.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒

∨
θX
j0,X

<x1,n<θX

g1,n(x1,n) = 0

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒

∨
θE
j0,E

<e1,n<θE

g2,n(e1,n) = 0
(3.40)

Proof. (i) In fact, Let j0,X > 1 satisfy Lemma (3.1.4). So, one has that

jn0,X > j2
0,X > 1, (3.41)

which implies that
jn0,X + 1

j0,X

>
j2

0,X + 1

j0,X

, (3.42)

which implies that
jn0,X + 1

j0,X

θX >
aX
k
, (3.43)

which, in turn, by invoking (3.35), implies that

g1,n

(
θX
j0,X

)
> 0. (3.44)

Therefore, if we invoke Lemma 3.1.1 and if we draw upon the Intermediate Value
Theorem [77, p. 93], then we conclude that there exists θX

j0,X
< x1,n < θX such that

g1,n(x1,n) = 0. The proof for (ii) is similar.

Further, Let j0,X > 1 satisfy Lemma 3.1.4. As we have worked out in the
demonstration of Corollary 3.1.5, one has that

g1,n

(
θX
j0,X

)
> 0. (3.45)

So, by continuity, one has that given ε =
g1,n

(
θX
j0,X

)
2

> 0 there exists 0 < δ(ε) <
x1,n−

θX
j0,X

2
such that if X > 0 and | X − θX

j0,X
|< δ(ε) then∣∣∣∣∣ g1,n

(
θX
j0,X

)
− g1,n(X)

∣∣∣∣∣< ε, (3.46)

which implies that

g1,n

(
θX
j0,X

)
−
g1,n

(
θX
j0,X

)
2

< g1,n(X), (3.47)

which implies that

g1,n

(
θX
j0,X

)
2

< g1,n(X),
(3.48)
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which, in turn, by invoking (3.35), implies that

g1,n(X) > 0. (3.49)

So, there is a region in (0, θX) in which g1,n(X) > 0, which, in turn, leads us to the
next result.

Corollary 3.1.6.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒

∨
θX<x2,n<

aX
k

g1,n(x2,n) = 0

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒

∨
θE<e2,n<

aE
k

g2,n(e2,n) = 0
(3.50)

Proof. (i) First, we note that

g1,n

(aX
k

)
= aX − aX

1(
kθX
aX

)n
+ 1

> 0. (3.51)

So, if we draw on Lemma 3.1.1 and upon the Intermediate Value Theorem [77, p. 93]
then one has that there exists θX < x2,n <

aX
k

such that g1,n(x2,n) = 0. Similarly,
one can prove (ii).

Next, if we build upon the former argument then we can show that given ε =
g1,n(aXk )

2
then there exists 0 < δ(ε) <

aX
k
−x2,n
2

such that if X > 0 and | X− aX
k
|< δ(ε)

then

g1,n(X) > 0. (3.52)

So there is a region in (x2,n,∞) in which g1,n(X) > 0.
Further, one has that

g′1,n

(aX
k

)
= k − naxθnX

(
aX
k

)n−1[
θnX +

(
aX
k

)n]2 . (3.53)

So, one has that g′1,n
(
aX
k

)
≤ 0 if and only if

2n
[(

kθX
aX

)n
+ 1

]2

<
θnX(
aX
2k

)n , (3.54)

which is a contradiction under (3.19), so one must have that

g′1,n

(aX
k

)
> 0. (3.55)

Corollary 3.1.7.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒

∨
θX<xmin,n<

aX
k

g′1,n(xmin,n) = 0

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒

∨
θE<emin,n<

aE
k

g′2,n(emin,n) = 0
(3.56)
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Figure 3.4: Here, we have plotted g1,n in blue for the choices n = 1, θX = 1, k = 1
and aX = 3.

Proof. (i) In fact, by continuity, if we draw on Lemma 3.1.2 and on the inequality
(3.55), by invoking the Intermediate Value Theorem [77, p. 93], then we deduce
that there exists θX < xmin,n <

aX
k

such that g′1,n(xmin,n) = 0. Similarly, we can
demonstrate (ii).

Thereby, the latter property of the function g1,n(X) is consistent with the Figure
3.1 under condition (3.19), so xmin,n is indeed the candidate to be the local minimum,
and indeed, as we shall see, the global minimum.

But, how can we give a logically valid argument for the characterization of the
critical points xmax,n and xmin,n as the local maximum and minimum, respectively?
And about the zeros of the function g1,n(X) ? To answer the latter questions, we
draw upon Descartes’ Theorem (see [101, p. 63]), which says that the number of
positive real roots of a polynomial

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0, (3.57)

with real coefficients, is less or equal to the the number of variations in sign of the
sequence of coefficients

an, an−1, an−2, . . . , a1, a0. (3.58)

So, we can prove the following result.

Corollary 3.1.8.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒ {x ∈ R+ : g1,n(X) = 0} = {0, x1,n, x2,n}

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒ {E ∈ R+ : g2,n(E) = 0} = {0, e1,n, e2,n}

(3.59)
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Proof. (i) First, we note that
g1,n(X) = 0 (3.60)

if and only if
kX(θnX +Xn)− aXXn

θnX +Xn
= 0 (3.61)

if and only if
X(kXn − aXXn−1 + kθnX) = 0 (3.62)

if and only if
X = 0 (3.63)

or
p(X) = kXn − aXXn−1 + kθnX = 0. (3.64)

So, drawing on Descartes’ Theorem, one has that p(X) has at most two positive real
roots. Therefore, if we invoke Corollaries 3.1.5 and 3.1.6 then we have that

{X > 0 : p(X) = 0} = {x1,n, x2,n}, (3.65)

and the Corollary has been proved. Similarly, one can prove (ii).

Further, one can use the same argument to determine the zeros of the function
g′1,n(X).

Corollary 3.1.9.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒ {x ∈ R+ : g′1,n(X) = 0} = {xmax,n, xmin,n}

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒ {E ∈ R+ : g′2,n(E) = 0} = {emax,n, emin,n}

(3.66)

Proof. (i) First, we note that
g′1,n(X) = 0 (3.67)

if and only if

k

(θnX +Xn)2

[
(θnX +Xn) + γX

n−1
2

] [
(θnX +Xn)− γX

n−1
2

]
= 0, (3.68)

with
√

naXθ
n
X

k
, if and only if

p1(Y ) = Y 2n + γY n−1 + θnX = 0, (3.69)

or
p2(Y ) = Y 2n − γY n−1 + θnX = 0, (3.70)

with Y = X
1
2 . But, p1(Y ) in (3.69) has no positive real solutions. On the other

hand, drawing on Descartes’ Theorem, one has that p2(Y ) in (3.69) has at most two
positive real roots. Therefore, if we invoke Corollaries 3.1.3 and 3.1.7 then we have
that

{Y > 0 : p2(Y ) = 0} = {X > 0 : Xn− γX
n−1
2 + θnX = 0} = {xmax,n, xmin,n}, (3.71)

and the Corollary has been proved. Similarly, one can show (ii).
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Figure 3.5: For this plot of g1,n in blue, one has made the choices n = 1, θX = 3.5,
k = 1 and aX = 3.

Further,

g′′1,n(X) = −naX
θnX

(θnX +Xn)3
Xn−2 [(n− 1)θnX − (n+ 1)Xn] = 0 (3.72)

if and only if

(n− 1)θnX − (n+ 1)Xn = 0 (3.73)

if and only if

X = xinf,n =

(
n− 1

n+ 1

) 1
n

θX < θX , (3.74)

so one has that g′′1,n(X) < 0 for X < xinf,n and g′′1,n(X) > 0 for X > xinf,n, that is,
g′1,n(X) < 0 is strictly decreasing on [0, xinf,n) and strictly increasing on (xinf,n,∞).
Thereby, one has that the graph of g1,n(X) is concave down on [0, xinf,n) and concave
up [convex] on (xinf,n,∞) wherein xinf,n denotes the inflection point.

As a conclusion, if we draw on (3.35), Lemma 3.1.4, and Corollary 3.1.8 then
we have that g1,n(X) > 0 on (0, x1,n). Moreover, we deduce from (3.1.9) that
g′1,n(X) > 0 on [0, xmax,n) and g′1,n(X) < 0 on (xmax,n, x1,n] so xmax,n is a local
maximum.

Likewise, if we build on Lemma 3.1.1 and Corollary 3.1.8 then we must have
that g1,n(X) < 0 on (x1,n, x2,n). In addition, we derive from Corollary 3.1.9 that
g′1,n(X) < 0 on [x1,n, xmin,n) and g′1,n(X) > 0 on (xmin,n, x1,n] so xmin,n is a local
minimum. Furthermore, we have shown in the demonstration of Corollary 3.1.6
that

g1,n

(aX
k

)
> 0. (3.75)
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Figure 3.6: Here, we see the plot of the qualitative behavior of g1,n(X) in blue for
the choices n = 4, θX = θE = 1, k = 0.7, aX = 3.2 and aE = 3.2. As a result,
one has that x1,n = 0.64, x2,n = 4.57, xmax,n = 0.39, xmin,n = 1.71, xb,n = 4.85,
g1,n(xmax,n) = 0.2006438059, and g1,n(xmin,n) = −1.6679341251.

Thus, if we draw on the fact that g′1,n(X) > 0 is, in particular, strictly increasing on
(x2,n,∞), and if we invoke Corollaries 3.1.8 and 3.1.9, then one has that g1.n(X) > 0
on (x2,n,∞). Therefore, for n ≥ 2, under conditions

θX <
aX
2k

(3.76)

and
θE <

aE
2k
, (3.77)

one has that g1,n(X) has exactly the behavior shown in Figure 3.6. Moreover, one
has that xmin,n is indeed a global minimum.

Proposition 3.1.10.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒ lim

n→+∞
x1,n = θX

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

n→+∞
e1,n = θE

(3.78)

Proof. (i) First, we note that

g1,n

(
θX
n1/n

)
> 0 (3.79)

if and only if

k
θX
aX

>
n1/n

n+ 1
. (3.80)

140



Chapter 3. The analysis of Huang’s model 141

Now, bearing in mind that we are under

0 < θX <
aX
2k
, (3.81)

if

k
θX
aX
≤ n1/n

n+ 1
(3.82)

then
k
θX
aX
≤ 0, (3.83)

seeing that
lim

n→+∞
n1/n = 1 (3.84)

as shown in [77, p. 57], and that

lim
n→+∞

1

n+ 1
= 0. (3.85)

However, (3.83) is a contradiction. Hence, one must have that

g1,n

(
θX
n1/n

)
> 0, (3.86)

which, by invoking (3.84), implies that

θX
n1/n

< x1,n < θX , (3.87)

which, in turn, implies that
lim

n→+∞
x1,n = θX . (3.88)

The case (ii) can be shown with the same argument.

Further, we define

H1,n(X) := aX
Xn

θnX +Xn
. (3.89)

So, in particular, seeing that

H ′1,n(X) := naXθ
nX

Xn−1

(θnX +Xn)2
> 0 (3.90)

on (0,+∞), one must have thatH1,n(X) is strictly increasing on (0,+∞). Moreover,
it is not difficult to show that

lim
n→+∞

H1,n(X) =


aX , X > θX ,

aX/2, X = θX ,

0, X < θX ,

(3.91)

in which the convergence notion is pointwise convergence.
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Lemma 3.1.11.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒ lim

n→+∞
g1,n

(aX
k

)
= 0

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

n→+∞
g2,n

(aE
k

)
= 0

(3.92)

Proof. (i) In fact, if
θX <

aX
2k

(3.93)

then (
kθX
aX

)n
<

1

2n
, (3.94)

which implies that

aX
1

1
2n

+ 1
< aX

1(
kθX
aX

)n
+ 1

, (3.95)

which implies that

− aX
1

1
2n

+ 1
> −aX

1(
kθX
aX

)n
+ 1

, (3.96)

which, in turn, implies that

0 < g1,n

(aX
k

)
< aX − aX

1
1

2n
+ 1

. (3.97)

Thus,
lim

n→+∞
g1,n

(aX
k

)
= 0. (3.98)

(ii) The same argument can be used to demonstrate it.

Proposition 3.1.12.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒ lim

n→+∞
x2,n =

aX
k

(ii)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

n→+∞
e2,n =

aE
k

(3.99)

Proof. (i) In fact, drawing on Corollary 3.1.6, one has that for n1 = 2 there exists
θX < x2,n1 < aX/k such that g1,n1(x2,n1) = 0. In view of (3.91), for n2 = 3 > n1 = 2,
one has that

H1,n1(x2,n1) < H1,n2(x2,n1), (3.100)

which, by invoking (3.75), implies that

g1,n2(x2,n1) < g1,n1(x2,n1) = 0 < g1,n2

(aX
k

)
, (3.101)

which, in turn, by drawing upon the Intermediate Value Theorem [77, p. 93], implies
that there exists x2,n1 < x2,n2 < aX/k such that g1,n1(x2,n2) = 0.

Hence, by induction, we can construct a sequence (x2,nj)
∞
j=1 such that
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θX < x2,n1 < x2,n2 < . . . < x2,nq < x2,nq+1 < . . . < aX/k, (3.102)

and that 
g1,nj+1

(x2,nj) < 0, X > θX ,

g1,nj(x2,nj) = 0, X = θX ,

0, X < θX ,

(3.103)

with j ∈ {1, 2, 3, . . .}. Therefore, if we draw upon Weierstraβ’s Theorem, see [77,
p. 40], then we deduce that there exists θX < x̄ ≤ aX/k such that

lim
j→+∞

x2,nj = x̄. (3.104)

However, by invoking (3.91), one has that

lim
j→+∞

H1,nj(x̄) = aX , (3.105)

or equivalently, ∧
ε>0

∨
J(ε)≥2

∧
j≥J(ε)

| H1,nj(x̄)− aX |< k
ε

2
, (3.106)

which is true, if and only if∧
ε>0

∨
J(ε)≥2

∧
j≥J(ε)

| g1,nj(x̄) + aX − kx̄ |< k
ε

2
, (3.107)

which implies that ∧
ε>0

∨
J(ε)≥2

∧
j≥J(ε)

| aX − kx̄ |< k
ε

2
+ | g1,nj(x̄) | . (3.108)

which, in turn, implies that

∧
ε>0

∨
J(ε)≥2

∧
j≥J(ε)

∣∣∣∣∣ aXk − x̄
∣∣∣∣∣< ε

2
+

1

k
g1,nj

(aX
k

)
. (3.109)

Now, without loss of generality, if we draw on Lemma 3.1.11 then we have that∧
ε>0

∨
J(ε)≥2

∧
j≥J(ε)

g1,nj

(aX
k

)
< k

ε

2
. (3.110)

Therefore, (3.109) and (3.110) imply that

∧
ε>0

∣∣∣∣∣ aXk − x̄
∣∣∣∣∣< ε, (3.111)

which, in turn, implies that
x̄ =

aX
k
, (3.112)

and we have just demonstrated (i). A similar argument can be used to show (ii).
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Lemma 3.1.13.

(i)
∧
n≥2

(
θX <

aX
2k

)
⇒
∧
b>0

∨
xb,n>x2,n

(g1,n(xb,n) = b) ∧
(
xb,n <

aX
k

+
b

k

)
(ii)

∧
n≥2

(
θX <

aE
2k

)
⇒
∧
b>0

∨
eb,n>e2,n

(g2,n(eb,n) = b) ∧
(
eb,n <

aE
k

+
b

k

) (3.113)

Proof. (i) Let b > 0. If we draw upon the Corollaries 3.1.6 and 3.1.8 then , under

θX <
aX
2k
, (3.114)

we have that there exists x2,n > θX such that g1,n(x2,n) = 0. Further, if we draw
on Corollary (3.1.9) then we deduce that g′1,n(X) > 0, that is, g1,n(X) is strictly
increasing with g1,n(X) > 0 for X > x2,n. So, by invoking the Intermediate Value
Theorem [77, p. 93], there exists xb,n > x2,n for which

g1,n(xb,n) = b. (3.115)

Moreover,

xb,n <
aX
k

+
b

k
(3.116)

if and only if
kxb,n − aX < g1,n(xb,n) (3.117)

if and only if

kxb,n − aX < kxb,n − aX
xnb,n

θnX + xnb,n
(3.118)

if and only if

aX
xnb,n

θnX + xnb,n
< aX (3.119)

if and only if

aX
1

θnX
xnb,n

+ 1
< aX . (3.120)

(ii) Similarly, one can prove this case.

Proposition 3.1.14.

(i) Ψ1,n(xb,n) = 0

(ii) Ψ2,n(eb,n) = 0

Proof. (i) In fact, recalling that

hn(Z) := b
1

1 + Zn
, (3.121)

and that
Ψ1,n(X) := h−1

n (g1,n(X)), (3.122)
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one has that

Ψ1,n(X) =

(
b

g1,n(X)
− 1

)1/n

. (3.123)

Now, if we draw upon Lemma 3.1.13 then we know that g1,n(xb,n) = b. Therefore,
one must have that

Ψ1,n(xb,n) = 0, (3.124)

and the Corollary has been demonstrated. (ii) The same argument can be used to
show this case.

Proposition 3.1.15.

(i)
∧
n≥2

(
θX < aX

2k

)
⇒ lim

X→0−
Ψ1,n(X) = +∞

(ii)
∧
n≥2

(
θX < aX

2k

)
⇒ lim

X→x+1,n
Ψ1,n(X) = +∞

(iii)
∧
n≥2

(
θX < aX

2k

)
⇒ lim

X→x−2,n
Ψ1,n(X) = +∞

(iv)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

E→0−
Ψ2,n(E) = +∞

(v)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

E→e+1,n
Ψ2,n(E) = +∞

(vi)
∧
n≥2

(
θE <

aE
2k

)
⇒ lim

E→e−2,n
Ψ2,n(E) = +∞

Proof. (i) In fact, if we draw on Corollary 3.1.8 then we have that

{X ≥ 0 : g1,n(X) = 0} = {0, x1,n, x2,n}. (3.125)

Moreover, by construction, one has that

Ψ1,n(X) =

(
b

g1,n(X)
− 1

)1/n

, (3.126)

which, in turn, implies that

lim
X→0−

Ψ1,n(X) = +∞. (3.127)

The items (ii), (iii), (iv), (v), and (vi) can be shown in a similar way.

Further, under θX < ax/2k, it is important to remark that

b ≥ g1,n(xmax,n) (3.128)

if and only if

Ψ1,n(xmax,n) =

(
b

g1,n(xmax,n)
− 1

)1/n

≥ 0. (3.129)

So,
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Ψ1,n(xmax,n) = 0 (3.130)

if and only if

b = g1,n(xmax,n). (3.131)

Moreover, if

b > g1,n(xmax,n) (3.132)

then there exists only one xb,n > 0 such that g1,n(xb,n) = 0 and Ψ1,n(xb,n) = 0, and,
in this case, consistent with Proposition 3.1.13, one must have that xb,n > x2,n. On
the other hand, if

0 < b < g1,n(xmax,n) (3.133)

then, by invoking the Intermediate Value Theorem [77, p. 93], one has that

{X ≥ 0 : g1,n(X) = b} = {x(−)
b,n , x

(+)
b,n , xb,n}, (3.134)

with 0 < x
(−)
b,n < xmax,n, xmax,n < x

(+)
b,n < x1,n, and xb,n > x2,n. Hence, one must have

that

Ψ1,n

(
x

(−)
b,n

)
= Ψ1,n

(
x

(+)
b,n

)
= Ψ1,n

(
x

(−)
b,n

)
= 0, (3.135)

so that Ψ1,n(X) is not defined on the interval
(
x

(−)
b,n , x

(+)
b,n

)
. A similar reasoning can

be performed under θE < aE/2k and

0 < b < g2,n(emax,n), (3.136)

for which one has that

{E ≥ 0 : g2,n(E) = b} = {e(−)
b,n , e

(+)
b,n , eb,n}, (3.137)

and that
Ψ2,n

(
e

(−)
b,n

)
= Ψ2,n

(
e

(+)
b,n

)
= Ψ2,n

(
e

(−)
b,n

)
= 0, (3.138)

with
0 < e

(−)
b,n < emax,n, (3.139)

emax,n < e
(+)
b,n < e1,n, (3.140)

and
eb,n > e2,n. (3.141)

Proposition 3.1.16.

(i)
∧
n≥2

(
θX < aX

2k

)
∧ (b ≥ g1,n(xmax,n))⇒ Ψ1,n(X)

∣∣∣∣∣
(0,xmax,n]

is strictly decreasing;
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Figure 3.7: For n ≥ 2, under conditions (3.149) and (3.150), one sees four possible
geometric conformations of the graph of the functions Ψ1,n and Ψ2,n, which must
be intuitively apprehended since the feasible asymmetric cases are not being depicted
therein. Moreover, (d) is the feasible geometric conformation with the maximal
number of steady states.

(ii)
∧
n≥2

(
θX < aX

2k

)
∧(b ≥ g1,n(xmax,n))⇒ Ψ1,n(X)

∣∣∣∣∣
[xmax,n,x1,n)

is strictly increasing;

(iii)
∧
n≥2

(
θX < aX

2k

)
∧ (b ≥ g1,n(xmax,n))⇒ Ψ1,n(X)

∣∣∣∣∣
(x2,n,xb,n]

is strictly decreasing;

(iv)
∧
n≥2

(
θE <

aE
2k

)
∧ (b ≥ g2,n(emax,n))⇒ Ψ2,n(E)

∣∣∣∣∣
(0,emax,n]

is strictly decreasing;

(v)
∧
n≥2

(
θE <

aE
2k

)
∧ (b ≥ g2,n(emax,n))⇒ Ψ2,n(E)

∣∣∣∣∣
[emax,n,e1,n)

is strictly increasing;

(vi)
∧
n≥2

(
θE <

aE
2k

)
∧ (b ≥ g2,n(emax,n))⇒ Ψ2,n(E)

∣∣∣∣∣
(e2,n,eb,n]

is strictly decreasing;

Proof. (i) In fact, Let 0 < X1 < X2 < xmax,n. If θX < aX
2k

then g1,n(X)

∣∣∣∣∣
(0,xmax,n)

is

strictly increasing. The latter implies that

g1,n(X1) < g1,n(X2) < g1,n(xmax,n), (3.142)
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which, under
b ≥ g1,n(xmax,n), (3.143)

implies that
b

g1,n(X1)
> 1 (3.144)

and that
b

g1,n(X2)
> 1 (3.145)

and that
b

g1,n(X1)
>

b

g1,n(X2)
, (3.146)

which, in turn, implies that(
b

g1,n(X1)
− 1

)1/n

>

(
b

g1,n(X2)
− 1

)1/n

, (3.147)

or equivalently,
Ψ1,n (X2) < Ψ1,n (X1) . (3.148)

To prove the other items, one can use a similar argument by drawing upon the
known properties of g1,n and g2,n under conditions θX < aX/2k and θE < aE/2k.

As a result of Proposition 3.1.16, under conditions

C1,X : θX <
aX
2k

(3.149)

and

C1,E : θE <
aE
2k
, (3.150)

one can sketch possible qualitative behaviors of the graphs of the functions Ψ1,n

and Ψ2,n, as seen in Figure 3.7. Furthermore, one can clearly see in Figure 3.7(d)
that there might be a feasible geometric conformation of the graphs of the functions
Ψ1,n and Ψ2,n with the maximal number of intersections, that is, with the maximal
number of steady states. The latter indeed amounts to 9 steady states.

Corollary 3.1.17.

(i)
∧
n≥2

(
θX < aX

2k

)
∧ (b ≥ g1,n(xmax,n))⇒ Ψ1,n(xmax,n) = min

X∈(0,x1,n)
Ψ1,n(X)

(ii)
∧
n≥2

(
θE <

aE
2k

)
∧ (b ≥ g2,n(emax,n))⇒ Ψ2,n(emax,n) = min

E∈(0,e1,n)
Ψ2,n(E)

Proof. In fact, (i) and (ii) follow directly from Proposition 3.1.16 (i), Proposition
3.1.16 (ii), Proposition 3.1.16 (iv) and Proposition 3.1.16 (v), respectively.
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However, under θX < aX/2k, if

0 < b < min{g1,n(xmax,n), g2,n(emax,n)} (3.151)

then, by invoking (3.189) and (3.204), one can demonstrate that

Ψ1,n(X)

∣∣∣∣∣(
0,x

(−)
b,n

] (3.152)

and that

Ψ2,n(E)

∣∣∣∣∣(
0,e

(−)
b,n

] (3.153)

are strictly decreasing, while

Ψ1,n(X)

∣∣∣∣∣[
x
(+)
b,n ,x1,n

) (3.154)

and

Ψ2,n(E)

∣∣∣∣∣[
e
(+)
b,n ,e1,n

) (3.155)

are strictly increasing. The latter properties of Ψ1,n and Ψ2,n can be shown by
constructing an argument that is similar to the one that has been used to show
(3.1.16) (i).

But, what can we conclude from Proposition 3.1.16 ? In fact, one has that the
conditions θX < aX/2k and θE < aE/2k are sufficient for the graphs of Ψ1,n and
Ψ2,n to have the qualitative behavior displayed in Figure 3.7. Hence, any steady
state (X∗, E∗) ∈ GΨ1,n

⋂
GΨ1,nmust lie in the rectangle{

(X,E) ∈ R2
+ : 0 ≤ X ≤ aX

k
+
b

k
, 0 ≤ E ≤ aE

k
+
b

k

}
. (3.156)

Furthermore, one has that Figure 3.7 (d) points us to the feasibility of having a
geometric conformation of the graphs of Ψ1,n and Ψ2,n with the maximal number of
steady states, for which, of course, it is necessary to stipulate additional conditions.

Lemma 3.1.18.

(i)
∧
n≥2

(
θX >

aX
k

)
⇒
∧
X≥0

g1,n(X) ≥ 0

(ii)
∧
n≥2

(
θE >

aE
k

)
⇒
∧
E≥0

g2,n(E) ≥ 0
(3.157)

Proof. (i) First, by construction, one has that

g1,∞(X) ≤ g1,n(X) ≤ f(X) = kX (3.158)

for all X ≥ 0, wherein g1,∞(X) = kX − aX . So,

g1,∞(X) = kX − aX ≥ 0 (3.159)
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if and only if
X ≥ aX

k
. (3.160)

Thereby, under θX > aX
k
, if we draw on (3.158) then we arrive at

g1,n(X) > 0, (3.161)

for all X ≥ θX . Now, under θX > aX
k
, suppose that there exists X̄ > 0 such that

g1,n(X̄) < 0, (3.162)

if and only if

kX̄ < aX
X̄n

θnX + X̄n
, (3.163)

which implies that
X̄ <

aX
k
. (3.164)

On the other hand,

kX̄ < aX
X̄n

θnX + X̄n
(3.165)

implies that
(θnX + X̄n) <

aX
k
X̄n−1, (3.166)

which implies that (aX
k

)n
<
aX
k
X̄n−1, (3.167)

which, in turn, implies that
X̄ >

aX
k
, (3.168)

which is a contradiction. Therefore, under θX > aX
k
, one must have that

g1,n(X̄) ≥ 0 (3.169)

for all X ≥ 0.

Further, if we recall that g1,n(X) has an inflection point at

xinf,n = θX

(
n− 1

n+ 1

)1/n

< θX (3.170)

then we have that g′′1,n(X) < 0 for X < xinf,n and g′′1,n(X) > 0 for X > xinf,n, that
is, g′1,n(X) is strictly decreasing on [0, xinf,n) and strictly increasing on (xinf,n,∞).
Hence, one has that the graph of g1,n(X) is concave down on [0, xinf,n) and concave
up [convex] on (xinf,n,∞).

So, if g′1,n(xinf,n) ≥ 0 then g1,n(X) is strictly increasing on [0,∞). The latter
condition amounts to

k − aX
θX

n2 − 1

4n

(
n+ 1

n− 1

)1/n

≥ 0, (3.171)

that is,

θX ≥
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

. (3.172)
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As an illustration of such a behavior, we refer to the Figure 3.3. On the other hand,
under θX > aX/k, there exist xmax,n and xmin,n satisfying

g1,n(xmax,n) = max
X∈(0,θX ]

g1,n(X) (3.173)

and
g1,n(xmin,n) = min

X∈[θX ,∞)
g1,n(X), (3.174)

if and only if

θX <
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

. (3.175)

Further, one has that

g1,n(θX) = kθX −
aX
2
, (3.176)

and
g′1,n(θX) = k − naX

4θX
, (3.177)

So, under θX > aX/k and (3.175), that is, in case xmax,n and xmin,n exist, one has
that the line YθX tangent to the graph of g1,n(X) at X = θX satisfies

g1,n(X) ≤ YθX (X) = g1,n(θX) + g′1,n(θX)(X − θX) (3.178)

for all 0 ≤ X ≤ θX , wherein

g1,n(θX) = kθX −
aX
2
, (3.179)

and
g′1,n(θX) = k − naX

4θX
, (3.180)

which implies that the inequality (3.178) can be rewritten as

g1,n(X) ≤ kX + ρX +
aX
2

(n
2
− 1
)
, (3.181)

with
ρ = −naX

4θX
. (3.182)

Therefore, one has that the lines Y (θX) and Y = kX intersect each other at the
point ((1− 2/n)θX , k(1− 2/n)θX) ∈ R2, which implies that

g1,n(xmax,n) < k

(
1− 2

n

)
θX . (3.183)

Likewise, one has that the lines Y (θX) and g1,∞(X) = kX − aX intersect each other
at the point ((1 + 2/n)θX , k(1 + 2/n)θX − aX) ∈ R2, which implies that

g1,n(xmin,n) > k

(
1 +

2

n

)
θX − aX > 0, (3.184)

as illustrated in Figure 3.8. Regarding the later, we denote

θ
(+)
X =

(
1 +

2

n

)
θX (3.185)
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Figure 3.8: Here, we see the plot of the qualitative behavior of g1,n(X) in blue for the
choices n = 20, θX = 1, k = 1, aX = 0.8. As a result, one has that xmax,n = 0.87,
xmin,n = 1.13, θ(−)

X = 0.9, θ(+)
X = 1.1, g1,n(xmax,n) = 0.8234985, g1,n(xmin,n) =

0.3951435, g1,n(θX) = 0.6, Y (θ
(−)
X ) = 0.9, and g1,∞(θ

(+)
X ) = 0.3.

and

θ
(−)
X =

(
1− 2

n

)
θX . (3.186)

Proposition 3.1.19.

(i)
∧
n≥2

(
θX > aX

k

)
∧(b ≥ g1,n(xmax,n))∧

(
θX < aX

k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ1,n(X)

∣∣∣∣∣
(0,xmax,n]

is strictly decreasing;

(ii)
∧
n≥2

(
θX > aX

k

)
∧(b ≥ g1,n(xmax,n))∧

(
θX < aX

k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ1,n(X)

∣∣∣∣∣
[xmax,n,xmin,n]

is strictly increasing;

(iii)
∧
n≥2

(
θX > aX

k

)
∧(b ≥ g1,n(xmax,n))∧

(
θX < aX

k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ1,n(X)

∣∣∣∣∣
[xmin,n,xb,n]

is strictly decreasing;

(iv)
∧
n≥2

(
θE >

aE
k

)
∧(b ≥ g2,n(emax,n))∧

(
θE <

aE
k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ2,n(E)

∣∣∣∣∣
(0,emax,n]

is strictly decreasing;
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Figure 3.9: For n ≥ 2, under conditions (3.209) and (3.210), one sees a geometric
conformation of Ψ1,n(X) and Ψ2,n(X) with the maximal number of steady states.

(v)
∧
n≥2

(
θE >

aE
k

)
∧(b ≥ g2,n(emax,n))∧

(
θE <

aE
k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ2,n(E)

∣∣∣∣∣
[emax,n,emin,n]

is strictly increasing;

(vi)
∧
n≥2

(
θE >

aE
k

)
∧(b ≥ g2,n(emax,n))∧

(
θE <

aE
k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ2,n(E)

∣∣∣∣∣
[emin,n,eb,n]

is strictly decreasing;

Proof. We can build on a similar argument used to show Proposition 3.1.16.

Corollary 3.1.20.

(i)
∧
n≥2

(
θX > aX

k

)
∧(b ≥ g1,n(xmax,n))∧

(
θX < aX

k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ1,n(xmax,n) =

min
X∈(0,θX ]

Ψ1,n(X)

(ii)
∧
n≥2

(
θX > aX

k

)
∧(b ≥ g1,n(xmax,n))∧

(
θX < aX

k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ1,n(xmin,n) =

max
X∈[θX ,xb,n]

Ψ1,n(X)

(iii)
∧
n≥2

(
θE >

aE
k

)
∧ (b ≥ g2,n(emax,n))∧

(
θE <

aE
k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ2,n(emax,n) =

min
E∈(0,θE ]

Ψ2,n(E)

(iv)
∧
n≥2

(
θE >

aE
k

)
∧ (b ≥ g2,n(emax,n))∧

(
θE <

aE
k
n2−1

4n

(
n+1
n−1

)1/n
)
⇒ Ψ2,n(emin,n) =

max
E∈[θE ,eb,n]

Ψ2,n(E)

Proof. It follows directly from Proposition (3.1.19).
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Figure 3.10: For n ≥ 2, under conditions (3.209) and (3.210), one sees the geometric
conformations of Ψ1,n(X) and Ψ2,n(X). As we see here, the respective conditions
are not sufficient to give rise to geometric conformations with the maximal number
of steady states.

However, if

θX >
aX
k
,

θX <
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,
(3.187)

and

max{g1,n(xmin,n), g2,n(emin,n)} ≤ b < min{g1,n(xmax,n), g2,n(emax,n)}, (3.188)

then, by invoking the Intermediate Value Theorem [77, p. 93], one has that

{X ≥ 0 : g1,n(X) = b} =
{
x

(−)
b,n , x

(+)
b,n , xb,n

}
, (3.189)

with 0 < x
(−)
b,n < xmax,n, xmax,n < x

(+)
b,n < xmin,n, and xb,n > xmin,n. Hence, one must

have that

Ψ1,n

(
x

(−)
b,n

)
= Ψ1,n

(
x

(+)
b,n

)
= Ψ1,n

(
x

(−)
b,n

)
= 0, (3.190)

so that Ψ1,n(X) is not defined on the interval
(
x

(−)
b,n , x

(+)
b,n

)
. A similar reasoning can

be performed under

θE >
aE
k
,

θE <
aE
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,
(3.191)
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Figure 3.11: Here, one sees the transition zone Hn[C2,X , C1,E] ∪ Hn[C1,X , C2,E] ∪
Hn[C2,X , C2,E]∪Hn[C3,X , C2,E]∪Hn[C2,X , C3,E] in yellow. The idea being illustrated
in this plot is that of a mutual transition between 4 subspaces of the parameter
space, namely, Hn[C1,X , C1,E], Hn[C3,X , C1,E], Hn[C1,X , C3,E], and Hn[C3,X , C3,E].
The transition occurs by varying θX in

(
aX
2k
, aX
k

)
with which one gets different plots

for g1,n in blue. In this transition zone, one sees behaviors of both subspaces. Here,
we vary θX in [0.42, 0.5], and we choose n = 4, aX = 0.8, and k = 1, with which we
find that θlayerX,c = 0.4535. The latter indicates the critical geometric conformation in
the non-generic critical layer.

and

max{g1,n(xmin,n), g2,n(emin,n)} ≤ b < min{g1,n(xmax,n), g2,n(emax,n)}, (3.192)

respectively. In fact, in this case, one has that

{E ≥ 0 : g2,n(E) = b} = {e(−)
b,n , e

(+)
b,n , eb,n}, (3.193)

and that
Ψ2,n

(
e

(−)
b,n

)
= Ψ2,n

(
e

(+)
b,n

)
= Ψ2,n

(
e

(−)
b,n

)
= 0, (3.194)

with 0 < e
(−)
b,n < emax,n, emax,n < e

(+)
b,n < emin,n, and eb,n > emin,n.

Therefore, one can show that

Ψ1,n(X)

∣∣∣∣∣(
0,x

(−)
b,n

] (3.195)

and that

Ψ2,n(E)

∣∣∣∣∣(
0,e

(−)
b,n

] (3.196)
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are strictly decreasing, while

Ψ1,n(X)

∣∣∣∣∣[
x
(+)
b,n ,x1,n

) (3.197)

and

Ψ2,n(E)

∣∣∣∣∣[
e
(+)
b,n ,e1,n

) (3.198)

are strictly increasing. By the same token, one can show that

Ψ1,n(X)

∣∣∣∣∣
[xmin,n,xb,n]

(3.199)

and that

Ψ2,n(E)

∣∣∣∣∣
[emin,n,eb,n]

(3.200)

are strictly decreasing.
Further, if

θX >
aX
k
,

θE >
aE
k
,

θX <
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

θE <
aE
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

(3.201)

and
0 < b < min{g1,n(xmin,n), g2,n(emin,n)}, (3.202)

then, by invoking the Intermediate Value Theorem [77, p. 93], one can show that

{X ≥ 0 : g1,n(X) = b} = {x(+)
b,n } (3.203)

and that
{E ≥ 0 : g2,n(E) = b} = {e(+)

b,n }, (3.204)

which implies that

Ψ1,n

(
x

(+)
b,n

)
= 0, (3.205)

and that

Ψ2,n

(
e

(+)
b,n

)
= 0, (3.206)

so

Ψ1,n(X)

∣∣∣∣∣(
0,x

(+)
b,n

] (3.207)
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Figure 3.12: For n ≥ 2, one sees Huang’s qualitative graphical matrix (Hn[Ci,X , Cj,E ])1,j
whose entries are being illustrated with the respective geometric conformations of the
graphs of Ψ1,n and Ψ2,n with the maximal number of steady states. Furthermore,
in the transition zone, one has the occurrence of both conformations though not in
the same parameter setting. Hence, the matrix consists of 4 principal components
Hn[C1,X , C1,E ]∪Hn[C3,X , C1,E ]∪Hn[C1,X , C3,E ]∪Hn[C3,X , C3,E ] in gray and a transition
zone Hn[C2,X , C1,E ]∪Hn[C1,X , C2,E ]∪Hn[C2,X , C2,E ]∪Hn[C3,X , C2,E ]∪Hn[C2,X , C3,E ] in
yellow, in which the critical non-generic layer is being indicated with the critical geometric
conformation.
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and that

Ψ2,n(E)

∣∣∣∣∣(
0,e

(+)
b,n

] (3.208)

are strictly decreasing. Therefore, Ψ1,n(X) and Ψ2,n(E) are indeed strictly decreas-
ing on (0,+∞).

But, what can we conclude from Proposition 3.1.19 ? In fact, under the condi-
tions

C3,X : θX >
aX
k

(3.209)

and

C3,E : θE >
aE
k
, (3.210)

one has that the graphs of Ψ1,n and Ψ2,n, for example, can have one of the quali-
tative behaviors displayed in Figures 3.9 and 3.10. In addition, any steady state
(X∗, E∗) ∈ GΨ1,n

⋂
GΨ1,n must lie in the rectangle{

(X,E) ∈ R2
+ : 0 ≤ X ≤ aX

k
+
b

k
, 0 ≤ E ≤ aE

k
+
b

k

}
. (3.211)

Furthermore, one has that the qualitative behavior shown in Figure 3.9 is similar
to the one displayed in Figure 3.7 (d), which, consistently, indicates the feasibility
of having a geometric conformation of the graphs of Ψ1,n and Ψ2,n with the maxi-
mal number of steady states. Regarding the latter, one must accordingly stipulate
additional conditions so as to fix such suitable geometric conformations.

Next, under the condition

C2,X :
aX
2k
≤ θX ≤

aX
k
, (3.212)

one sees in Figure 3.11 that g1,n(X) shows behaviours under both conditions
θX < aX/2k and θX > aX/k. A similar argument can be used for g2,n(E) under the
condition

C2,E :
aE
2k
≤ θE ≤

aE
k
, (3.213)

respectively.
But, how can we understand the structure of the parameter space ΛH := R6

≥0 ×
N≥0 of Huang’s model? In fact, if we conveniently define

Λ̂H := R6
≥0 × N≥2 (3.214)

and
Λ

(1)
H := R6

≥0 × {1}, (3.215)

then one has that
ΛH = Λ̂H ∪ Λ

(1)
H . (3.216)

Upon doing so, we first intend understanding the structure of Λ̂H , whilst the struc-
ture of Λ

(1)
H will be addressed later in Chapter 3.
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Now, if we invoke Section 2.8, then we can regard

Â := {C1,X , C1,E, C2,X , C2,E, C3,X , C3,E} (3.217)

as the set of the primary aspects, which, in fact, is fully determined by the mathe-
matical formulation of Huang’s model. Hence, for λ, λ̃ ∈ Λ̂H , one can define

λ ∼Â λ̃ (3.218)

if and only if
| A[Hλ] |R+=| A[Hλ̃] |R+ , (3.219)

for all A ∈ Â, with | A |R+ denoting the truth-value of a mathematical assertion A.
As Hλ betokens Huang’s model with a fixed parameter setting λ ∈ Λ̂H , then A[Hλ]
symbolizes a formalized mathematical assertion on Hλ indeed.

Next, as we have argued in Chapter 2, one has that the binary relation defined
in (3.218) is indeed an equivalence one. Thereby, for each n ≥ 2, one must have
that the sets

Hn[Ci,X , Cj,E] :=
{
λ ∈ R6 × {n} : ` Ci,X [Hλ]∧ ` Cj,E[Hλ]

}
, (3.220)

with i, j ∈ {1, 2, 3}, are equivalent classes, among whichHn[C1,X , C1,E],Hn[C1,X , C3,E],
Hn[C3,X , C1,E], and Hn[C3,X , C3,E], are consistently said to form the main com-
ponents, while Hn[C2,X , C1,E], Hn[C1,X , C2,E], Hn[C2,X , C3,E], Hn[C3,X , C2,E], and
Hn[C2,X , C2,E], are said to generate the transition zone.

Hence, for each n ≥ 2, one has that the equivalent classes in (3.220) give rise to
a matrix structure , that is,

(Hn[Ci,X , Cj,E])i,j :=
⋃

i,j∈{1,2,3}

Hn[Ci,X , Cj,E], (3.221)

which, by construction, implies that

Λ̂H�∼Â =
⋃
n≥2

(Hn[Ci,X , Cj,E])i,j , (3.222)

and we can now understand a large part of the parameter space of the model, as
illustrated in Figure 3.13. However, we have not answered the question concerning
the dimension of the critical layer, which, so far, has been intuitively apprehended.
So, how large is this critical layer ? Which conception of measure can be used to
access it ? Although knowing the critical layer entails answering the later questions,
one has that such a task deviates from the scope of this thesis.

So, for each n ≥ 2, if we slice Λ̂H at the respective level n and if we look into it
modulo the equivalence relation defined in (3.218), then we see the matrix structure
defined in (3.221). The later can be envisaged through the qualitative behaviour of
the graphs [nullclines] of Ψ1,n(X) and Ψ2,n(E), as illustrated in Figure 3.12. In light
of that, we name the matrix structure (Hn[Ci,X , Cj,E])i,j defined in (3.221) Huang’s
qualitative graphical matrix.
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Figure 3.13: Here, one sees an illustration of Λ̂H�∼Â with 2 ≤ n1 ≤ n2 ≤ . . . ≤ n,
which, for n ≥ 2, amounts to Huang’s qualitative graphical matrix (Hn[Ci,X , Cj,E])1,j.
Thereby, consistently, n1 ≥ 2, one has that Hn1 = (Hn1 [Ci,X , Cj,E])i,j. Likewise, for
n2 ≥ 2, one has that Hn2 = (Hn2 [Ci,X , Cj,E])i,j.

Further, without loss of generality, we make no explicit distinction among the
equivalent classes defined in (3.220) as elements of

Λ̂H�∼Â,

the components of Huang’s qualitative graphical matrix and the sets on the left-hand
side of definition (3.220).

3.2 The scenario space and the determination of
primitive scenarios

So, for n ≥ 2, if we invoke Proposition 3.1.16 and if we want to fix the geometric
conformation of Ψ1,n and Ψ2,n shown in Figure 3.7(d), then it is sufficient to have
that the conditions
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C1,X : θX <
aX
2k
,

C1,E : θE <
aE
2k
,

C0,n : b ≥ max{g1,n(xmax,n), g2,n(emax,n)},

C1,n : 0 ≤ Ψ2,n(emax,n) < Ψ−1
1,n|(0,xmax,n)

(
aE
k

+
b

k

)
,

C2,n : 0 ≤ Ψ1,n(xmax,n) < Ψ−1
2,n|(0,emax,n)

(
aX
k

+
b

k

)
,

(3.223)

hold, as illustrated in the Figure 3.14; with xmax,n ∈ [0, x1,n] satisfying

g1,n(xmax,n) = max
X∈[0,x1,n]

g1,n(X), (3.224)

and with emax,n ∈ [0, e1,n] satisfying

g2,n(emax,n) = max
E∈[0,e1,n]

g2,n(E), (3.225)

as seen in the Figure 3.6. So, by construction, for any n ≥ 2, there is

(aX , aE, k, θX , θE, b, n) ∈ Λ̂H

for which the conditions in (3.223) hold. In fact, if aX , k, θX satisfies C1,X then one
chooses for aE = aX , θX = θE, and b = g1,n(xmax,n) = g2,n(emax,n). In so doing,
one has that Ψ1,n(xmax,n) = 0 = Ψ2,n(emax,n). As a conclusion, one has that such a
geometric conformation of the graphs of Ψ1,n(X) and Ψ2,n(E) can always be found
in Hn[C1,X , C1,E] independent upon n ≥ 2. Furthermore, it leads us to one of the
most important results of our analysis.

Theorem 3.2.1. If λ = (aX , aE, k, θX , θE, b, n) ∈ Λ̂H satisfies the conditions

C1,X , C1,E, C0,n, C1,n, C2,n (3.226)

then

GΨ1,n ∩GΨ2,n = {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9}, (3.227)

as illustrated in Figure 3.14.

Proof. It follows directly from Proposition 3.1.16 under conditions C1,n and C2,n.

In fact, for n = 4 and (aX = 3.2, aE = 3.2, k = 0.7, θX = 1, θE = 1), one has
that the choice b = 0.2007054 = max{g1,n(xmax,n), g2,n(emax,n)} guarantees the sat-
isfaction of the conditions (3.223)4,5, which, indeed, can be verified in the numerical
simulations shown in Figure 3.15 and 3.16. However, for b = 0.209, one loses
information due to the destruction of 4 steady states as shown in Figure 3.17 and
3.18. In fact, for the later choice, one has that the conditions (3.223)4,5 no longer
hold.

But, can we estimate b > 0 for which it happens? In fact, by inspection of the
Figure (4.1), a sufficient condition is that

e1,n > Ψ1,n(xn,max) > Ψ−1
2,n(xmax,n), (3.228)
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Figure 3.14: Here, for n ≥ 2, we see the qualitative behavior of the graphs of Ψ1,n

and Ψ2,n, under (3.223).

which implies that
b < g1,n(xmax,n)[1 + en1,n], (3.229)

which, in turn, gives an upper bound for b. Hence, the critical value bc of b must
satisfy

max{g1,n(xmax,n), g2,n(emax,n)} < bc < min{g1,n(xmax,n)[1+en1,n], g2,n(emax,n)[1+xn1,n]}.
(3.230)

For instance, for n = 4 and (aX = 3.2, aE = 3.2, k = 0.7, θX = 1, θE = 1), one has
that bc must be in the interval (0.2007054, 0.2343782). Consistently, if

b ≥ max{g1,n(xmax,n)[1 + en1,n], g2,n(emax,n)[1 + xn1,n]} (3.231)

then one must have that the destruction of the 4 steady states, as shown in Fig-
ure 3.18, has already occurred. The inequalities (3.230) and (3.231) are clearly
illustrated in Figure (3.8).
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Figure 3.15: Here, we have plotted the graphs of Ψ1,n (in blue) and Ψ2,n (in red) for
the choices n = 4, b = 0.2007054, θX = θE = 1, k = 0.7, aX = 3.2 and aE = 3.2.
The latter choices shows correctness in our strategy to fix the geometric conformation
showed in Figure 4.1.

Figure 3.16: For the choices n = 4, b = 0.2007054 = g1,n(xmax,n) = g2,n(emax,n),
θX = θE = 1, k = 0.7, aX = 3.2 and aE = 3.2, one sees a better look at the region
wherein one has 4 steady states.
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Figure 3.17: Here, we have plotted the graphs of Ψ1,n (in blue) and Ψ2,n (in red) for
the choices n = 4, b = 0.209, θX = θE = 1, k = 0.7, aX = 3.2 and aE = 3.2. With
this choice, we dismantle the geometric conformation in Figure (3.15) by destroying
4 steady states thereof.

Figure 3.18: For the choices n = 4, b = 0.209, θX = θE = 1, k = 0.7, aX = 3.2 and
aE = 3.2, one sees the region wherein one loses 4 steady states.
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But, what about the other main components of Huang’s qualitative graphical
matrix ? In fact, it is sufficient to consider Hn[C3,X , C3,E]. So, by invoking Propo-
sition 3.1.19, if the conditions

C3,X : θX >
aX
k
,

C3,E : θE >
aE
k
,

C0,n : b ≥ max{g1,n(xmax,n), g2,n(emax,n)},

C1,n : 0 ≤ Ψ2,n(emax,n) < Ψ−1
1,n|(0,xmax,n)

(
aE
k

+
b

k

)
,

C2,n : 0 ≤ Ψ1,n(xmax,n) < Ψ−1
2,n|(0,emax,n)

(
aX
k

+
b

k

)
,

C3,n : θX <
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

c4,n : θE <
aE
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

C5,n : Ψ1,n(xmin,n) > Ψ−1
2,n|(emin,n,+∞)(xmin,n),

C6,n : Ψ2,n(emin,n) > Ψ−1
1,n|(xmin,n,+∞)(emin,n),

(3.232)

hold, then one has that the graphs of Ψ1,n and Ψ2,n behave as illustrated in the Figure
3.19, with xmax,n ∈ [0, x1,n] satisfying (3.224) and (3.225). The latter amounts to
the following result.

Theorem 3.2.2. If λ = (aX , aE, k, θX , θE, b, n) ∈ Λ̂H satisfies the conditions

C3,X , C3,E, C0,n, C1,n, C2,n, C3,n, C4,n, C5,n, C6,n, (3.233)

then

GΨ1,n ∩GΨ2,n = {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9}, (3.234)

with an illustration similar to the one displayed in Figure 4.1.

Proof. It follows directly from Proposition (3.1.19) under conditions C1,n, C2,n, C5,n,
and C6,n.

As an illustration of Theorem 3.2.2 one can look at the Figures 3.20 and 3.21.
Further, if the conditions
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C1,X : θX >
aX
k
,

C3,E : θE >
aE
k
,

C0,n : b ≥ max{g1,n(xmax,n), g2,n(emax,n)},

C1,n : 0 ≤ Ψ2,n(emax,n) < Ψ−1
1,n|(0,xmax,n)

(
aE
k

+
b

k

)
,

C2,n : 0 ≤ Ψ1,n(xmax,n) < Ψ−1
2,n|(0,emax,n)

(
aX
k

+
b

k

)
,

c4,n : θE <
aE
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

C6,n : Ψ2,n(emin,n) > Ψ−1
1,n|(xmin,n,+∞)(emin,n),

(3.235)

hold, then one has that the graphs of Ψ1,n and Ψ2,n behave as illustrated in the
main component Hn[C1,X , C3,E] illustrated in Figure 3.12, with xmax,n ∈ [0, x1,n]
satisfying (3.224) and (3.225). In that regard, one can prove the following result.

Theorem 3.2.3. If λ = (aX , aE, k, θX , θE, b, n) ∈ Λ̂H satisfies the conditions

C1,X , C3,E, C0,n, C1,n, C2,n, C4,n, C6,n, (3.236)

then

GΨ1,n ∩GΨ2,n = {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9}, (3.237)

with an illustration similar to the one displayed in Figure 4.1.

Proof. It follows directly from Propositions (3.1.16) and (3.1.19) under conditions
C1,n, C2,n, and C6,n.

Likewise, if the conditions

C3,X : θX >
aX
k
,

C1,E : θE >
aE
k
,

C0,n : b ≥ max{g1,n(xmax,n), g2,n(emax,n)},

C1,n : 0 ≤ Ψ2,n(emax,n) < Ψ−1
1,n|(0,xmax,n)

(
aE
k

+
b

k

)
,

C2,n : 0 ≤ Ψ1,n(xmax,n) < Ψ−1
2,n|(0,emax,n)

(
aX
k

+
b

k

)
,

C3,n : θX <
aX
k

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

C5,n : Ψ1,n(xmin,n) > Ψ−1
2,n|(emin,n,+∞)(xmin,n),

(3.238)

hold, then one has that the graphs of Ψ1,n and Ψ2,n behave as illustrated in the
main component Hn[C3,X , C1,E] illustrated in Figure 3.12, with xmax,n ∈ [0, x1,n]
satisfying (3.224) and (3.225). As a consequence, one has the following result.
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Figure 3.19: For n ≥ 2, under conditions (3.232) and (3.210), one sees a geometric
conformation of Ψ1,n(X) (in blue) and Ψ2,n(X) (in red) with the maximal number
of steady states.

Theorem 3.2.4. If λ = (aX , aE, k, θX , θE, b, n) ∈ Λ̂H satisfies the conditions

C3,X , C1,E, C0,n, C1,n, C2,n, C3,n, C5,n, (3.239)

then

GΨ1,n ∩GΨ2,n = {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9}, (3.240)

with an illustration similar to the one displayed in Figure 4.1.

Proof. It follows directly from Propositions (3.1.16) and (3.1.19) under conditions
C1,n, C2,n, and C5,n.

However, how can we define the scenario space of Huang’s model ? Can we tell
which scenarios are the primitive ones ? In fact, bearing in mind that the relevant
aspect being prioritized here concern the number of steady states, if we anew invoke
Section 2.8 then we can now regard
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Figure 3.20: In this plot, we have the graphs of Ψ1,n (in blue) and Ψ2,n (in red) for
the choices n = 10, b = 0.36173 = g1,n(xmax,n) = g2,n(emax,n), θX = θE = 0.5, k = 1,
aX = 0.4 and aE = 0.4. With these choices, we can see a geometric conformation
with the maximal number of steady states.

A := {C1,X , C1,E, C2,X , C2,E, C3,X , C3,E, C0,n, C1,n, C2,n, C3,n, C4,n, C5,n, C6,n}

(3.241)
as the set of the relevant aspects, which, in fact, is fully determined by the math-
ematical analysis and formulation of Huang’s model. By drawing on (3.217), one
has that Â ⊂ A, so the relevant aspects contain the primary aspects. Hence, for
λ, λ̃ ∈ Λ̂H , one can define

λ ∼A λ̃ (3.242)

if and only if
| A[Hλ] |R+=| A[Hλ̃] |R+ , (3.243)

for all A ∈ A, with | A |R+ denoting the truth-value of a mathematical assertion A.
Recalling that Hλ represents Huang’s model with a fixed parameter setting λ ∈ Λ̂H ,
so A[Hλ] symbolizes a formalized mathematical assertion on Hλ.

Hence, the space SCH of all possible scenarios of Huang’s model is defined as

SCH := Λ̂H�∼A (3.244)

with
Λ̂H�∼A := {[λ] : λ ∈ Λ̂H} (3.245)

representing the quotient space, that is, the set of all equivalent classes of Λ̂H with
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Figure 3.21: For the choices n = 10, b = 0.36173 = g1,n(xmax,n) = g2,n(emax,n),
θX = θE = 0.5, k = 1, aX = 0.4 and aE = 0.4, one has a better look at the region
wherein 4 equilibria are located close to each other.

respect to ∼A. So, recalling from Chapter 2 that

q : Λ→ Λ̂H�∼A
λ 7→ [λ]

denotes the canonical map, and that

scHλ := q(λ), (3.246)

for all λ ∈ Λ; one has that a scenario scMλ consists of all λ’s for which the relevant
aspects A have the same truth-values on the respective Hλ’s. Hence, one has that

SCH =
{
scHλ : λ ∈ Λ̂H

}
. (3.247)

Therefore, we have shown in Theorems (3.2.1), (3.2.1), (3.2.1), and (3.2.1) that
the scenario

Hn [C1,X , C1,E, C0,nC1,n, C2,n] ∈ SCH (3.248)

defined by the set of all λ ∈ Λ̂H for which

` C1,X [Hλ] ∧ ` C1,E[Hλ] ∧ ` C0,n[Hλ] ∧ ` C1,n[Hλ] ∧ ` C2,n[Hλ], (3.249)

and that the scenario

Hn [C3,X , C3,E, C0,n, C1,n, C2,n, C3,n, C4,n, C5,n, C6,n] ∈ SCH (3.250)
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defined by the set of all λ ∈ Λ̂H for which

` C1,X [Hλ] ∧ ` C1,E[Hλ] ∧ ` C0,n[Hλ] ∧ ` C1,n[Hλ] ∧ ` C2,n[Hλ]

∧ ` C3,n[Hλ] ∧ ` C4,n[Hλ] ∧ ` C5,n[Hλ] ∧ ` C6,n[Hλ],
(3.251)

and that the scenario

Hn [C1,X , C3,E, C0,n, C1,n, C2,n, C4,n, C6,n] ∈ SCH (3.252)

defined by the set of all λ ∈ Λ̂H for which

` C1,X [Hλ] ∧ ` C3,E[Hλ] ∧ ` C0,n[Hλ] ∧ ` C1,n[Hλ] ∧ ` C2,n[Hλ]

∧ ` C4,n[Hλ] ∧ ` C6,n[Hλ],
(3.253)

and that the scenario

Hn [C3,X , C1,E, C0,n, C1,n, C2,n, C3,n, C5,n] ∈ SCH (3.254)

defined by the set of all λ ∈ Λ̂H for which

` C3,X [Hλ] ∧ ` C1,E[Hλ] ∧ ` C0,n[Hλ] ∧ ` C1,n[Hλ] ∧ ` C2,n[Hλ]

∧ ` C3,n[Hλ] ∧ ` C5,n[Hλ],
(3.255)

are all primitive ones. Conveniently, we denote

PrimHn
sc := {Hn [C1,X , C1,E, C0,n, C1,n, C2,n] ,

Hn [C1,X , C3,E, C0,n, C1,n, C2,n, C4,n, C6,n] ,

Hn [C3,X , C1,E, C0,n, C1,n, C2,n, C3,n, C5,n] ,

Hn [C3,X , C3,E, C0,n, C1,n, C2,n, C3,n, C4,n, C5,n, C6,n]}

(3.256)

as the set of all primitive scenarios with respect to the Huang’s qualitative graphical
matrix with n ≥ 2. In fact, the elements of PrimHn

sc correspond to the primi-
tive scenarios in each of the four main components Hn[C1,X , C1,E], Hn[C1,X , C3,E],
Hn[C3,X , C1,E], and Hn[C3,X , C3,E] of Huang’s qualitative graphical matrix respec-
tively.

However, it is essential to pointing out that the conditions C3,n, C4,n, C5,n, and
C6,n suggest that finding a primitive scenario in either of the main components
Hn[C1,X , C3,E], Hn[C3,X , C1,E], and Hn[C3,X , C3,E] might not be realizable for some
representatives of the respective equivalence classes, given that n ≥ 2 is highly
constrained therein. This is in opposition to the equivalent class Hn[C1,X , C1,E]
in which one can always find primitive scenarios independent upon the parameter
n ≥ 2.

To argue the latter, suppose that ϕ = (aX , aE, θX , θE, k, b, n) ∈ Λ̂H satisfy con-
ditions C3,X and C3,E. So, if ϕ satisfies condition C5,n then it entails that

b >

{[
bn

kn
1

(1 + xnmin,n)n

]
+ 1

}
g1,n(xmin,n), (3.257)

which, drawing upon (3.184), implies that

b > k

(
1 +

2

n

)
θX − aX > 0, (3.258)
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which implies that
b

k
+
aX
k
>

(
1 +

2

n

)
θX , (3.259)

which, in turn, given that θX ≥ aX
k
, implies that

n >
k

b
θX , (3.260)

and we have found a lower bound for such a feasible n ≥ 2. Moreover, if we draw
upon the illustration shown in the Figure 3.8 then we have that

k

(
1 +

2

n

)
θX > b, (3.261)

which implies that

n <
2(

b
kθX
− 1
) , (3.262)

which, in turn, might not be realizable.
So far we know that we have proposed a systematic evaluation of a phenomeno-

logical mathematical model grounded in Frege’s judgment theory, wherein the con-
cept of primitive notion is of great importance provided that it allows concepts to
be defined sequentially. So, in the respective proposed evaluation (see Chapter 2),
primitive scenarios play the role of primitive notions. In fact, in our analysis of
Huang’s model, one has that a scenario with the maximal number of steady states
will be the primitive scenario playing the role of a primitive notion, being irreducible,
seeing that it cannot be ’reduced’ to any scenario with more steady states.

Hence, if we want to test the adequacy-hypothesis, that is, if we want to execute
suitable judgements upon a primitive scenario so as to shift to a scenario similar [∼]
to an observation of the ontological system then we need to know the stability of
the steady states of such a primitive scenario.

3.3 The phase-portrait of Huang’s model

Having gone through the Section 3.2, we are now in the position of asserting that, in
each primitive scenario, the total number of steady states amounts to 9 as illustrated
in Figure 3.23 for the primitive scenario

Hn [C1,X , C1,E, C0,n, C1,n, C2,n] .

However, can we give an intuitive description of the phase-portrait of the respective
primitive scenario ? If this is true then what can we tell about the phase-portrait
of each element of PrimHn

sc ? In fact, as we shall demonstrate in Section 3.4 that
the stability of the corresponding steady states does not vary with the elements of
PrimHn

sc , then we can thus far conclude that the phase-portrait of the each primitive
scenario is "equivalent" to each other. Therefore, we are entitled to make the claim
that the Figure 3.22 is indeed the phase-portrait of the model.

But, which rational rules can we stipulate so as to deduce the phase-portrait
depicted in Figure 3.22 ? In fact, drawing upon the approach in [38, p. 11-49], if
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Figure 3.22: Here we see the illustration of the qualitative behavior of the nullclines
defined by the graphs of Ψ1,n (in blue) and Ψ2,n (in red) (3.223), with the maximal
number of steady states: z0

ss,1, z
0
ss,2, z

0
ss,3, . . . , z

0
ss,9. So, one has that the steady states

z0
ss,1, z0

ss,2, z0
ss,3, z0

ss,4 are stable ones, while the steady states z0
ss,5, z0

ss,6, z0
ss,8, and

z0
ss,9 are saddle ones. Finally, we have that the steady state z0

ss,7 is an unstable one.

we invoke (3.1) then we denote the vector field of Huang’s model by

FH(X,E) :=

(
dX

dt
,
dE

dt

)
(3.263)

for all (X,E) ∈ R2
+. By construction, one has that

FH(X,E) :=

(
0,
dE

dt

)
(3.264)

on GΨ1,n , and that

FH(X,E) :=

(
dX

dt
, 0

)
(3.265)

on GΨ2,n . So, one can then draw the respective horizontal and vertical arrows of the
vector field FH(X,E) on the corresponding nullclines1, and subsequently, one can
sketch the resultant of the vector field FH(X,E) in the vicinity of each steady state.
Upon doing so, one can then draw trajectories-to which the arrows of the resultant

1Actually, as we want to be pragmatic then we omit it in the illustration 3.22.
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of the vector field are tangent-in the neighbourhood of the steady states , which, in
turn, allows one to infer the stability and instability of the steady states.

Therefore, if we apply the aforementioned rational steps then we arrive at the
sketch of the vector field depicted in Figure 3.22, which enables us to deduce that
the steady states z0

ss,1, z0
ss,2, z0

ss,3, z0
ss,4 are stable ones; and that the steady states

z0
ss,5, z0

ss,6, and z0
ss,8, and z0

ss,9 are saddle ones; and that the steady state z0
ss,7 is an

unstable one.
Nonetheless, how did we arrive at the sketch of the stable and unstable manifolds

illustrated in Figure 3.22 ? First, how can we understand the essence of the concept
of stable and unstable manifold ? Such manifolds form the four main trajectories-
no eigenvalue of the Jacobian Matrix DF (X∗, E∗) has real part equal to zero- from
which it is possible to infer the qualitative behaviour of any trajectory in the vicinity
of a steady state. For example, in the case of Z0

ss,7-an unstable equilibrium-one has
that one of the unstable trajectories of Z0

ss,7 in the zone [0, X∗,0ss,7]×[0, E∗,0ss,7] cannot be
above the graph of Ψ2,n on [E∗,0ss,6, E

∗,0
ss,7] seeing that it would be inconsistent with the

stipulated rational rules. In fact, if it was located slightly close or above the graph of
Ψ2,n on [E∗,0ss,6, E

∗,0
ss,7] then, consistent with the provided rational rules, one has that

the arrow of vector field tangent to the respective unstable trajectory would not be
pointing outwards. Hence, the respective unstable trajectory must be sufficiently
under Ψ2,n on [E∗,0ss,6, E

∗,0
ss,7] and sufficiently close to Ψ1,n on [X∗,0ss,6, X

∗,0
ss,1] and to Ψ2,n

on [X∗,0ss,5, X
∗,0
ss,1] to be consistent with the corresponding dynamics.

As a conclusion hereof, one has that there is no closed orbit in the phase portrait
of any element of PrimHn

sc . In the next section, we will give the proofs of the stability
of the respective steady states.

3.4 Stability of steady states of the primitive sce-
narios in PrimHn

sc

Without loss of generality, we will adopt the same notation to refer to the set of all
steady states in each element of PrimHn

sc , that is, the set

z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9 (3.266)

symbolizes all the nine steady states found in each of the primitive scenarios in
PrimHn

sc as illustrated in Figure 3.23 for the primitive scenario

Hn [C1,X , C1,E, C0,n, C1,n, C2,n] .

But, how shall we demonstrate the (in)stability of the steady states in (3.266)
? First of all, we need to decide which concept of stability suits the purpose of our
analysis2. If we recall Section 1.3 then we have used the predicate "being robust
to small perturbations" so as to intuitively describe the essence of stability. The
latter is indeed captured by the notion of linear stability as defined in [67, p.128-
129]. In fact, we will draw upon the Hartman-Grobman Theorem [67, p. 119-123],
that is, linearization, which, indeed, essentially states that, in the case of a hyper-
bolic equilibrium, one has that the dynamics of a non-linear system is qualitatively

2There are many concepts depending on the nature of the dynamical system as seen in [59].
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Figure 3.23: Here we see the illustration of the qualitative behavior of the Ψ1,n and
Ψ2,n (3.223), with the maximal number of steady states: z0

ss,1, z
0
ss,2, z

0
ss,3, . . . , z

0
ss,9.

equivalent to the dynamics of the corresponding linearized system. As we will see
in this section, the later approach will suffice to determine the instability of a sub-
set of the steady states in (3.266). To demonstrate the stability and instability
of the remaining ones, we will appeal to topological arguments by drawing upon
Poincaré-Bendixson Theorem.

In fact, if we invoke (3.1) then we can define

F1(X,E) := aX
Xn

θnX +Xn
+ b

1

1 + En
− kX,

F2(X,E) := aE
En

θnE + En
+ b

1

1 +Xn
− kE,

(3.267)

which, by recalling (3.10) and (3.11), can be written as

F1(X,E) = hn(E)− g1,n(X),

F2(X,E) = hn(X)− g2,n(E).
(3.268)
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Further, let (X∗, E∗) ∈ GΨ1,n ∩GΨ2,n . So, one has that the Jacobian matrix reads

DFH(X∗, E∗) =

[
DF11(X∗, E∗) DF12(X∗, E∗)

DF21(X∗, E∗) DF22(X∗, E∗)

]
, (3.269)

which implies that

det(DFH − λI)(X∗, E∗) =

∣∣∣∣∣DF11 − λ DF12

DF21 DF22 − λ

∣∣∣∣∣
= λ2 − (DF11(X∗, E∗) +DF22(X∗, E∗))λ+DF11(X∗, E∗)DF22(X∗, E∗)

−DF12(X∗, E∗)DF21(X∗, E∗),

(3.270)

which, in turn, implies that the characteristic polynomial of the Jacobian matrix
indeed reads

p(λ) = λ2 − (DF11(X∗, E∗) +DF22(X∗, E∗))λ+ (DF11(X∗, E∗)DF22(X∗, E∗)

−DF12(X∗, E∗)DF21(X∗, E∗)),

(3.271)

or equivalently,

p(λ) = λ2 − TrDFH(X∗, E∗)λ+ DetDFH(X∗, E∗), (3.272)

with
Tr
(
DFH(X∗, E∗)

)
= DF11(X∗, E∗) +DF22(X∗, E∗), (3.273)

denoting the trace of the Jacobian matrix DF (X∗, E∗), while

Det
(
DFH(X∗, E∗)

)
= DF11(X∗, E∗)DF22(X∗, E∗)−DF12(X∗, E∗)DF21(X∗, E∗)

(3.274)
expresses the determinant of the Jacobian matrix. Hence, one has that the roots of
(3.271) are given by the following formula

λ± =
(DF11 +DF22)±

√
(DF11 −DF22)2 + 4DF12DF21

2
, (3.275)

so
Tr
(
DFH(X∗, E∗)

)
= λ−(X∗, E∗) + λ+(X∗, E∗), (3.276)

and
Det

(
DFH(X∗, E∗)

)
= λ−(X∗, E∗)λ+(X∗, E∗). (3.277)

Next, by drawing on (3.268), one has that

DF11(X∗, E∗) = −g′1,n(X∗),

DF22(X∗, E∗) = −g′2,n(E∗),

DF12(X∗, E∗) = h′n(E∗),

DF21(X∗, E∗) = h′n(X∗),

(3.278)

which implies that

Tr
(
DFH(X∗, E∗)

)
= −g′1,n(X∗)− g′2,n(E∗), (3.279)
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and that

Det
(
DFH(X∗, E∗)

)
= g′1,n(X∗)g′2,n(E∗)− h′n(E∗)h′n(X∗). (3.280)

Furthermore, by construction h′n < 0, so one has that

DF12(X∗, E∗)DF21(X∗, E∗) = h′n(E∗)h′n(X∗) > 0, (3.281)

which entails that

(DF11(X∗, E∗)−DF22(X∗, E∗))2 + 4DF12(X∗, E∗)DF21(X∗, E∗) > 0, (3.282)

and we conclude that λ±(X∗, E∗) ∈ R.
Therefore, concerning the stability of the steady states, one has that Huang’s

model can only yield saddle ones, for which

(λ−(X∗, E∗) > 0 ∧ λ+(X∗, E∗) < 0) ∨ (λ−(X∗, E∗) < 0 ∧ λ+(X∗, E∗) > 0),

or stable ones, for which

λ−(X∗, E∗) < 0 ∧ λ+(X∗, E∗) < 0

or unstable ones, for which

λ−(X∗, E∗) > 0 ∧ λ+(X∗, E∗) > 0.

Moreover, as the eigenvalues are real, no Hopf bifurcations can occur.
Further, recalling definitions (3.310) and (3.311), if we note that

Ψ′i,n(·) =
d (h−1

n )

dZ

∣∣∣∣∣
Z=gi,n(·)

g′i,n(·), (3.283)

and that
d (h−1

n )

dZ
(z) =

1

h′n(h−1
n (z))

, (3.284)

with i ∈ {1, 2}, then we have that

Ψ′i,n(·) =
g′i,n(·)

h′n(Ψi,n(·))
, (3.285)

and we can prove the following results.

Definition 3.4.1. The sign function is defined as

sgn(x) :=


−1 if x < 0;

0 if x = 0;

1 if x > 0.

Proposition 3.4.1. Let (X∗, E∗) ∈ GΨ1,n ∩GΨ1,n. One has that :

(i) Ψ′1,n(X∗) < 0 ∧Ψ′2,n(E∗) < 0⇒ Tr
(
DFH(X∗, E∗)

)
< 0 (required for a steady

state to be a stable one);
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(ii) Ψ′1,n(X∗) > 0 ∧ Ψ′2,n(E∗) > 0 ⇒ Tr
(
DFH(X∗, E∗)

)
> 0 ⇒ (X∗, E∗) is a

saddle or an unstable equilibrium;

Proof. In fact, if we use (3.285) in (3.279) then we arrive at

Tr
(
DFH(X∗, E∗)

)
= −h′n(E∗)Ψ′1,n(X∗)− h′n(X∗)Ψ′2,n(E∗), (3.286)

which, in turn, implies that

sgn
(
Tr
(
DFH(X∗, E∗)

))
= − sgn

(
h′n(E∗)Ψ′1,n(X∗) + h′n(X∗)Ψ′2,n(E∗)

)
. (3.287)

Since h′n < 0, we get that (i) and (ii) follow immediately from (3.289) and the
proposition has been proved.

Proposition 3.4.2. Let (X∗, E∗) ∈ GΨ1,n ∩GΨ1,n. One has that :

(i) Det
(
DFH(X∗, E∗)

)
= h′n(E∗)h′n(X∗)

[(
Ψ′1,n(X∗)Ψ′2,n(E∗)

)
− 1
]
;

(ii) sgn
(
Det

(
DFH(X∗, E∗)

))
= sgn

([(
Ψ′1,n(X∗)Ψ′2,n(E∗)

)
− 1
])
;

(iii)
(
Ψ′1,n(X∗) < 0 ∧Ψ′2,n(E∗) > 0

)
∨
(
Ψ′1,n(X∗) > 0 ∧Ψ′2,n(E∗) < 0

)
⇒ (X∗, E∗)

is a saddle equilibrium;

Proof. In fact, if we use (3.285) in (3.280) then we get that

Det
(
DFH(X∗, E∗)

)
= g′1,n(X∗)g′2,n(E∗)− h′n(E∗)h′n(X∗)

= h′n(E∗)Ψ′1,n(X∗)h′n(X∗)Ψ′2,n(E∗)− h′n(E∗)h′n(X∗)

= h′n(E∗)h′n(X∗)
[(

Ψ′1,n(X∗)Ψ′2,n(E∗)
)
− 1
]
,

(3.288)

which, in turn, implies that

sgn
(
Det

(
DFH(X∗, E∗)

))
= sgn

([(
Ψ′1,n(X∗)Ψ′2,n(E∗)

)
− 1
])
, (3.289)

and (i) and (ii) have been proved. Now, as h′n < 0 then one has that if Ψ′1,n(X∗) < 0
and Ψ′2,n(E∗) > 0 then Ψ′1,n(X∗)Ψ′2,n(E∗) < 0, which entails that

sgn
(
Det

(
DFH(X∗, E∗)

))
< 0,

which, in turn, drawing on (3.277), implies that λ−(X∗, E∗) > 0 or λ+(X∗, E∗) < 0,
or equivalently, (X∗, E∗) is a saddle equilibrium. Similarly, one can show (iii) for
Ψ′1,n(X∗) > 0 and Ψ′2,n(E∗) < 0, what completes the proof.

Theorem 3.4.3. Let n ≥ 2. With respect to each primitive scenario in

PrimHn
sc ,

one has that the steady states

z0
ss,5, z

0
ss,6, z

0
ss,8, z

0
ss,9

are saddle ones.
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Figure 3.24: Here we see the phase-portrait of the primitive scenario
Hn[C1,X , C1,E, C0,n, C1,n, C2,n]. To apply the Poicaré-Bendixon Theorem, we choose
convenient "trap regions" B0

ss,1, B0
ss,2, B0

ss,3, and B0
ss,4, and B0

ss,7, i.e. a sufficiently
small neighbourhood of the steady states z0

ss,1, z0
ss,2, z0

ss,3, and z0
ss,4 wherein all the

positive orbits are bounded. Similarly, we choose a convenient "trap region" B0
ss,7,

i.e. a sufficiently small neighbourhood of the steady states z0
ss,7, in which all the

negative orbits are bounded.

Proof. Let Zsaddles := {z0
ss,5, z

0
ss,6, z

0
ss,8, z

0
ss,9}. If we draw upon Propositions 3.1.16

and 3.1.19 then we conclude that for all z∗ = (X∗, E∗) ∈ Zsaddles, one has that

Ψ′1,n(X∗) < 0 ∧Ψ′2,n(E∗) > 0,

or
Ψ′1,n(X∗) > 0 ∧Ψ′2,n(E∗) < 0,

which, by building on Proposition 3.4.2 (iii), implies that z∗ = (X∗, E∗) is a saddle
equilibrium, which completes the proof.

Proposition 3.4.4. Let n ≥ 2 and Zstable := {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4}. With respect to

each primitive scenario in
PrimHn

sc ,

one has that ∧
z∗∈Zstable

λ−(z∗) < 0,

and the steady states in Zstable are possibly stable.
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Proof. In fact, by drawing on Section 1.2, for z0
ss,1 = (X0

ss,1, E
0
ss,1), one knows that

0 <
b

1 +
(
b
k

+ aE
k

)n < X0
ss,1 < xmax,n,

0 <
b

1 +
(
b
k

+ aX
k

)n < E0
ss,1 < emax,n,

(3.290)

which, by drawing on (3.267), implies that

DF11(z0
ss,1) = −g′1,n(X0

ss,1) < 0,

DF22(z0
ss,1) = −g′2,n(E0

ss,1) < 0,
(3.291)

given that g1,n(X)

∣∣∣∣∣
[0,xmax,n]

and g2,n(E)

∣∣∣∣∣
[0,emax,n]

, under θX < aX/2k and θE <

aE/2k, are strictly increasing. Therefore, one has that

λ−(z0
ss,1) =

(DF11 +DF22)±
√

(DF11 −DF22)2 + 4DF12DF21

2
< 0

Likewise, one can provide a similar argument for z0
ss,2, z0

ss,3, and z0
ss,4.

Hence, with respect to Theorem 3.4.4, if we want to draw upon linearization
so as to prove that the steady states in Zstable := {z0

ss,1, z
0
ss,2, z

0
ss,3, z

0
ss,4} are indeed

stable ones, then it is sufficient to demonstrate that, for all z∗ ∈ Zstable, it is true
that

λ+(z∗) =
(DF11 +DF22) +

√
(DF11 −DF22)2 + 4DF12DF21

2
< 0. (3.292)

However, a priori, the right-hand side of (3.292) can be equal to zero for some
representative [parameter setting] of a primitive scenario, which, in turn, implies
that, in general, these equilibria might not be hyperbolic. Thereby, we might not
be able to draw upon linearization, that is, the Hartman-Grobman Theorem [67,
p. 119-123] so as to deduce the stability of the steady states in Zstable.

Moreover, if we adopt the approach used to show Theorem 3.4.3 then it is not
difficult to demonstrate that

Tr
(
DFH(z∗)

)
< 0

for all z∗ ∈ Zstable. So, according to Proposition 3.4.2, it is sufficient to prove that

Ψ′1,n(X∗)Ψ′2,n(E∗) > 1 (3.293)

so as to conclude that z∗ = (X∗, E∗) ∈ Zstable is a stable equilibrium. Nonetheless,
proving (3.293) is equivalent to proving (3.292). Similarly, we can prove that

λ+(z0
ss,7) > 0,

and that
Tr
(
DFH(z∗)

)
> 0,
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which, in turn, implies that it is sufficient to either prove that

λ−(z0
ss,7) > 0,

or that
Ψ′1,n(X0

ss,7)Ψ′2,n(E0
ss,7) > 1,

so as to demonstrate that the equilibrium z0
ss,7 is an unstable one. Thus, it seems

that such an algebraic approach is neither suitable to prove the stability of the
equilibria in Zstable nor suitable to deduce that z0

ss,7 is an unstable steady state.
Following the approach of [14, p. 141–142], we shall build on a topological argu-

ment so as to determine the stability of the steady states Zstable := {z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4}

and the instability of the steady state z0
ss,7. Let (3.1) be denoted by

u̇ = FH(u), (3.294)

with u(t) := (X(t), E(t)) and FH :=
(
dX
dt
, dX
dt

)
. So, one has that, by definition,

FH ∈ C1(R2
+). Now, let ϕ(·,u0) : R → R2

+ be the solution of the initial value
problem

u̇ = FH(u)

u(0) = u0

(3.295)

so one has that the mapping ϕt : R2
+ → R2

+ defined by

ϕt(u0) := ϕ(t,u0) (3.296)

is said to be the flow of the differential equation in (3.1).
Next, let the set

γu0
:=
{
u ∈ R2

+ : u = ϕ(t,u0), t ∈ R
}

(3.297)

denote the orbit passing through u0. In that regard, one defines the positive orbit
as the set

γ+
u0

:=
{
u ∈ R2

+ : u = ϕ(t,u0), t ≥ 0
}
, (3.298)

while the negative orbit is defined by the set

γ−u0
:=
{
u ∈ R2

+ : u = ϕ(t,u0), t ≤ 0
}
. (3.299)

Having defined γ+
u0
, the positive orbit passing through u0, and γ−u0

, the negative
orbit passing through u0, one defines the ω-limit set of the positive orbit γ+

u0
, denoted

by ω
(
γ+
u0

)
, as the set of all points p ∈ R2

+ for which there exists a sequence (tn)+∞
n=1

satisfying
lim

n→+∞
tn = +∞, (3.300)

such that
p = lim

tn→+∞
ϕ(tn,u0). (3.301)
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In a similar way, one defines the α−limit set of the negative orbit γ−u0
, denoted by

α
(
γ−u0

)
, as the set of all points p ∈ R2

+ for which there exists a sequence (tn)+∞
n=1

satisfying
lim

n→+∞
tn = −∞, (3.302)

such that
p = lim

tn→−∞
ϕ(tn,u0). (3.303)

Theorem 3.4.5 (Poicaré-Bendixson). If γ+ is a bounded positive orbit of the system
(3.294) then its ω−limit set ω(γ+) is either:

1. a steady state;

2. a periodic orbit;

3. a set consisting of steady-states and orbits having these steady-states as their
α− and ω−limit.

Proof. See [100, p. 38-47].

Therefore, the essence of Poicaré-Bendixson’s Theorem is that a bounded positive
orbit can either converge to a steady state or to a periodic orbit or is already itself
a periodic orbit. Moreover, an analogous result can be demonstrated to the case of
a negative bounded orbit. But, how will we use this theorem then ? In fact, as we
illustrate in Figure 3.24, we will find suitable small neighbourhoods ["trap regions"]
around the respective equilibria which suffice to apply Poicaré-Bendixon’s Theorem.

Theorem 3.4.6. Let n ≥ 2. With respect to each primitive scenario in

PrimHn
sc ,

one has that the steady states

z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4

are stable ones.

Proof. Claim 1: It is true that z0
ss,1 is a stable equilibrium. In fact, choose 0 <

r1 < min{xmax,n, emax,n}. Consistent with our topological approach, we claim that
there is no periodic orbit in Br(z

0
ss,1) := {z = (X,E) ∈ R2 : d(z, z0

ss.1) < r1}. Let d
denote the Euclidian distance on R2. If there is a periodic orbit in Br1(z

0
ss,1) then,

by drawing upon the Bendixson’s criterion [100, p. 38], one has that the divergence
of the vector field ∇ · FH , that is,

∇ · FH(X,E) = −g′1,n(X)− g′2,n(E) (3.304)

changes sign inBr1(z
0
ss,1), which is a contradiction for all elements of PrimHn

sc . Hence,
one must have that there is no periodic orbit in Br1(z

0
ss,1). Now, we claim that∨

0<r0ss,1<r1

∨
t0ss,1>0

∧
t≥t0ss,1

d(ϕ(t,u0), z0
ss,1) < r0

ss,1. (3.305)
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In fact, in view of the phase-portrait of Huang’s model depicted in 3.22, if the claim
(3.306) was not true then∧

0<δ<r1

∧
n>1

∨
tn,δ>n

d(ϕ(tn,δ,u0), z0
ss,1) > δ, (3.306)

which would imply that the vector field would not be pointing inward the small
ball Bδ(z

0
ss,1) contradicting the phase-portrait of Huang’s model in the vicinity of

the steady state z0
ss,1. So, one has that all the positive orbits in Br0ss,1

(z0
ss,1) are

bounded, which, in turn, by drawing upon Poincaré-Bendixson Theorem, implies
that all the positive orbits in B0

ss,1 := Br0ss,1
(z0
ss,1) converge to the equilibrium z0

ss,1.
Therefore, one has that the steady state z0

ss,1 is a stable one.
Claim 2: It is true that the steady states z0

ss,2, z0
ss,3, and z0

ss,4 are stable ones.
In fact, we essentially use the same argument to arrive at the "trap regions" B0

ss,2,
B0
ss,3, and B0

ss,4 so as to apply Poincaré-Bendixson Theorem, as illustrated in Figure
3.24.

Theorem 3.4.7. Let n ≥ 2. With respect to each primitive scenario in

PrimHn
sc ,

one has that the steady state z0
ss,7 is an unstable one.

Proof. In fact, let t̃ = −t denote a parametrization by the reverse time. Let B0
ss,7

be a sufficiently small open ball centered at z0
ss,7. If we use the same argument to

demonstrate the Theorem 3.4.6 then we arrive at the conclusion that the α-limit of
all bounded negative orbits in B0

ss,7 is equal to z0
ss,7. Therefore, if we remove the

parametrization by the reverse time then we have that all the orbits in B0
ss,7 diverge

from z0
ss,7, which, in turn, implies that z0

ss,7 is an unstable equilibrium.

But, could we have used the same topological argument to determine the in-
stability of the saddle equilibria ? No, we could not. In fact, as we see in the
phase-portrait of Huang’s model 3.22, for all sufficiently small neighbourhood of
a saddle equilibrium there exists an orbit which is not bounded to the trapping
region, so we are not in condition to apply Poicaré-Bendixon’s Theorem. As an
illustration of the results in this Section, one can have a look at the Figures 3.22,
3.25, and 3.26. The latter illustration and simulations provide us with a suitable
picture of the phase portrait of a primitive scenario in each of the four main compo-
nents Hn[C1,X , C1,E], Hn[C1,X , C3,E], Hn[C3,X , C1,E], and Hn[C3,X , C3,E] of Huang’s
qualitative graphical matrix.

3.5 The subclass
(
H1

[
C

(1)
i,X , C

(1)
j,E

])
i,j

of models

If we invoke Subsection 1.1.1, then we can conveniently define

g1(X) := kX − aX
X

θX +X
,

g2(E) := kE − aE
E

θE + E
,

(3.307)
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Figure 3.25: Here we see a simulation of the trajectories for the primitive scenario
[aX = 3.2, aE = 3.2, k = 0.7, θX = 1, θE = 1, b = 0.2007054, n = 4], which numeri-
cally illustrate the phase-portrait of Huang’s model illustrated in Figure 3.22.

Figure 3.26: Here, we see a simulation of the trajectories of the primitive scenario
[aX = 3.2, aE = 3.2, k = 0.7, θX = 1, θE = 1, b = 0.2007054, n = 4] in which we zoom
in on the region with the steady states z0

ss,1, z
0
ss,5, z

0
ss,6, and z0

ss,7. In fact, we might
infer therefrom that the steady state z0

ss,1 is a stable one, and that the steady state
z0
ss,7 is an unstable one while the steady states z0

ss,5 and z0
ss,6 are saddle ones.
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and

h(Z) := b
1

1 + Z
, (3.308)

for all X,E,Z ≥ 0. If b > 0 then the function defined in (3.308) is invertible, whose
inverse reads

h−1(Z̃) =

(
b

Z̃
− 1

)
, (3.309)

for all Z̃ ∈ (0, b]. So, following the same strategy, one defines

Ψ1 := h−1 ◦ g1, (3.310)

and
Ψ2 := h−1 ◦ g2. (3.311)

Lemma 3.5.1.

(i)θX <
aX
k
⇒ g′1(0+) < 0

(ii)θE <
aE
k
⇒ g′2(0+) < 0

(3.312)

Proof. In fact, one has that

g′1(0+) := lim
h→0+

g1,n(0 + h)− g1,n(0)

h
= k − aX

θX
< 0, (3.313)

so the graph of g1 is not tangent to the line f(X) = kX at X = 0. Similarly, one
can prove (ii).

Lemma 3.5.2.

(i)θX <
aX
k
⇒ (g1(θX) < 0 ∧ g′1(θX) < 0) ∧

(
g1

(aX
k

)
> 0 ∧ g′1

(aX
k

)
> 0
)

(ii)θE <
aE
k
⇒ (g1(θE) < 0 ∧ g′1(θE) < 0) ∧

(
g1

(aE
k

)
> 0 ∧ g′1

(aE
k

)
> 0
)

(3.314)

Proof. (i) In fact, at X = θX , one has that

g1(θX) = kθX −
aX
2
< 0, (3.315)

and at X = aX
k

one has that

g1

(aX
k

)
= aX − aX

1(
kθX
aX

)
+ 1

> 0. (3.316)

Next, one has

g′1(X) = k − aX
θX

(θX +X)2
, (3.317)
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Figure 3.27: For n = 1, one has that Huang’s qualitative graphical matrix(
H1[C

(1)
i,X , C

(1)
j,E]
)
i,j

is a square matrix with a similar qualitative behavior of the

nullclines in each of its entries. Furthermore, it has exactly one stable steady
state regardless of the component of the matrix.

which implies that

g′1(θX) = k − aX
4θX

< 0, (3.318)

and that

g′1

(aX
k

)
= k

1− aX
kθX

1(
1 + aX

kθX

)2

 > 0. (3.319)

For (ii), on has that the proof is similar.

So, drawing upon the Intermediate Value Theorem [77, p. 93] and Lemma 3.5.2,
one has that there exists θX < x1 <

aX
k

such that g1(x1) = 0. In fact, g1(X) = 0 if
and only if

X [kX + (kθX − aX)] = 0, (3.320)

that is, if and only if X = 0 or X = aX
k
− θX . So,

x1 =
aX
k
− θX > 0 (3.321)
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and, under θE < aE
k
, one can similarly prove that g1(E) = 0 if and only if g1(0) = 0

or g1(e1) = 0 with
e1 =

aE
k
− θE > 0. (3.322)

Moreover, under θX < aX/k, there exists θX < X̂ < aX
k

such that g′1(X̂) = 0. In
fact, g′1(X̂) = 0 if and only if

k(θX + X̂)2 − aXθX = 0, (3.323)

if and only if

X̂ =

√
aX
k
θX − θX > 0. (3.324)

In a similar way, under θX < aX/k, one can prove that g′2(Ê) = 0 if and only if

Ê =

√
aE
k
θE − θE > 0, (3.325)

with θE < Ê < aE
k
.

Further, one has that

g′′1(X) = 2aX
θX

(θX +X)3
> 0, (3.326)

which implies that g′1(X) is strictly increasing on [0,∞), and that g1(X) is concave
up [convex] on [0,∞). Therefore, for n = 1, under conditions

C
(1)
1,X : θX <

aX
k

(3.327)

and
C

(1)
1,E : θE <

aE
k
, (3.328)

one has that g1(X) has exactly the behaviour shown in Figure 3.4.
Now, with a similar argument used in Subsection 1.1.1, for b > 0 there exists

x1 < xb such that g1(xb) = 0. So, if

b > g1

(aX
k

)
= aX

1− 1(
kθX
aX

)
+ 1

 (3.329)

then xb > aX/k; if

b ≤ g1

(aX
k

)
= aX

1− 1(
kθX
aX

)
+ 1

 (3.330)

then x1 < xb ≤ aX/k. In particular, if

b = g1

(aX
k

)
= aX

1− 1(
kθX
aX

)
+ 1

 (3.331)

then xb = aX/k. So, by construction, under (3.327) and (3.328), one has that
Ψ1(xb) = 0, Ψ1(eb) = 0,
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lim
X→x+1

Ψ1(X) = +∞, (3.332)

and that
lim
E→e+1

Ψ2(E) = +∞, (3.333)

which leads us to the following result:

Proposition 3.5.3.

(i) θX < aX
k
⇒ Ψ1(X)

∣∣∣∣∣
(x1,xb]

is strictly decreasing;

(ii) θE < aE
k
⇒ Ψ2(E)

∣∣∣∣∣
(e1,eb]

is strictly decreasing;

Proof. (i) In fact, under θX < aX
k
, one has that g1(X)

∣∣∣∣∣
(x1,+∞)

is strictly in-

creasing whilst h−1(Z)

∣∣∣∣∣
(0,+∞)

is strictly decreasing which, in turn, implies that

Ψ1(X)

∣∣∣∣∣
(x1,+∞)

is strictly decreasing. For (ii), one can give a similar argument.

As a consequence of Proposition 3.5.3, one has that

GΨ1 ∩GΨ2 = {z∗} (3.334)

with z∗ = (X∗, E∗) satisfying

θX < x1 < X∗ < xb <
aX
k

+
b

k
, (3.335)

and
θE < e1 < E∗ < eb <

aE
k

+
b

k
. (3.336)

Now, under the conditions

C
(1)
2,X : θX ≥

aX
k

(3.337)

and
C

(1)
2,E : θE ≥

aE
k
, (3.338)

one has that g1(X) ≥ 0 for X ≥ 0. In fact, if X > 0 and aX ≥ aX/k then

θX +X >
aX
k
, (3.339)

which implies that

kX > aX
X

θX +X
, (3.340)
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Figure 3.28: Here we see the phase-portrait in H1[C(1)1,X , C
(1)
1,E]. To apply the

Poicaré-Bendixson Theorem, we choose a convenient "trap region" Vz∗, that is, a
sufficiently small neighbourhood of the steady state z∗ wherein all the positive orbits
are bounded.

which, in turn, implies that
g1(X) > 0. (3.341)

In a similar way, one can show that if X ≥ 0 and θX ≥ aX/k then

(θX +X)2 ≥ aX
k
, (3.342)

which implies that g′1(X) ≥ 0. Therefore, under the conditions (3.339) and (3.338),
one has that g1(X) has precisely the behaviour shown in Figure 3.5. So, one has
that

lim
X→0+

Ψ1(X) = +∞, (3.343)

and that
lim
E→0+

Ψ2(E) = +∞, (3.344)

and one can invoke the reasoning from (3.329) to (3.331) so as to demonstrate the
following result.

Proposition 3.5.4.

(i) θX ≥ aX
k
⇒ Ψ1(X)

∣∣∣∣∣
(0,xb]

is strictly decreasing;

(ii) θE ≥ aE
k
⇒ Ψ2(E)

∣∣∣∣∣
(0,eb]

is strictly decreasing;

Proof. The same argument used in the proof of the Proposition 3.5.3.

It is not difficult to see that Proposition 3.5.4 entails that

GΨ1Ψ2 = {z∗ = (X∗, E∗)}, (3.345)
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so one has that
θX < x1 < X∗ < xb <

aX
k

+
b

k
, (3.346)

and that
θE < e1 < E∗ < eb <

aE
k

+
b

k
. (3.347)

Next, by invoking (3.215), we intend understanding the structure of Λ
(1)
H . In fact,

by drawing upon Section 2.8, then we can regard

Â1 :=
{
C

(1)
1,X , C

(1)
2,X , C

(1)
1,E, C

(1)
2,E

}
(3.348)

as the set of the primary aspects, so for λ, λ̃ ∈ Λ
(1)
H , one can define

λ ∼Â1
λ̃ (3.349)

if and only if
| A[Hλ] |R+=| A[Hλ̃] |R+ , (3.350)

for all A ∈ Â1. Hence, one can show that (3.349) is an equivalence relation. Thereby,
one must have that the sets

H1

[
C

(1)
i,X , C

(1)
j,E

]
:=
{
λ ∈ R6 × {1} : ` C(1)

i,X [Hλ]∧ ` C(1)
j,E[Hλ]

}
, (3.351)

with i, j ∈ {1, 2}, are equivalent classes.
So, for each n = 1, one has that the equivalent classes in (3.351) give rise to a

matrix structure , that is,(
H1

[
C

(1)
i,X , C

(1)
j,E

])
i,j

:=
⋃

i,j∈{1,2}

H1

[
C

(1)
i,X , C

(1)
j,E

]
, (3.352)

which, by construction, implies that

Λ
(1)
H�∼Â1

=
(
H1

[
C

(1)
i,X , C

(1)
j,E

])
i,j
, (3.353)

and we can now understand the parameter space of the model for n = 1, as illustrated
in Figure 3.27.

Theorem 3.5.5. Let i, j ∈ {1, 2}. With respect to the scenario

H1

[
C

(1)
i,X , C

(1)
j,E

]
,

one has that the unique steady state3

GΨ1 ∩GΨ2 = {z∗}

is a stable one.
3Up to a homeomorphism.
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scHω1
scHω2

scHω3 scHω4

Figure 3.29: Here, one sees the simulation of the trajectories with respect to(
H1

[
C

(1)
i,X , C

(1)
j,E

])
i,j

for the scenarios scHω1
= [aX = 0.8, aE = 0.8, θX = 0.5, θE =

0.5, b = 0.0811, n = 1]; scHω2
= [aX = 0.8, aE = 0.8, θX = 0.5, θE = 2, b =

0.0811, n = 1]; scHω3
= [aX = 0.8, aE = 0.8, θX = 2, θE = 0.5, b = 0.0811, n = 1],

and scHω4
= [aX = 0.8, aE = 0.8, θX = 2, θE = 2, b = 0.0811, n = 1].

Proof. First of all, for all r > 0 one has that the divergence of the vector field FH ,
that is,

∇ · FH(X,E) = −g′1,n(X)− g′2,n(E)

does not change sign in Br(z
∗), which, by invoking Bendixson’s criterion [100, p. 38],

implies that there is no periodic orbit in Br(z
∗). Next, by using the same argument

of Theorem 3.4.6, there must exist a small neighbourhood Vz∗ of z∗, as illustrated
in Figure 3.28, in which all the positive orbits are bounded. Hence, by applying
Poicaré-Bendixson Theorem, we conclude that all the positive orbits in Vz∗ converge
towards z∗. Therefore, z∗ is a stable equilibrium.

3.6 Discussion
In the respective chapter, we have analysed Huang’s model by drawing upon the
systematic approach introduced in Chapter 2. In fact, we have found that the
parameter space of the model can be understood to some extent by using the Huang’s
qualitative graphical matrix. Indeed, as seen in 3.13, the parameter space can
be imagined as an infinite rectangular cylinder parameterized by n ∈ N, through
which, for all n ≥ 2, one has that any cylindric section amounts to the Huang’s
qualitative graphical matrix illustrated in 3.12, which, in turn, is characterized by a
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3×3 squared matrix with four main components and a transition layer containing a
critical layer. On the other hand, in the case of n = 1, one has that the corresponding
cylindric section amounts to the Huang’s qualitative graphical matrix characterized
by a 2 × 2 squared matrix in which the transition layer has shrunk down to the
critical layer.

Provided that a phenomenological model such as Huang’s model is a simplified
representation of a complex biological process [e.g. stem cell differentiation], which
is inherently stochastic, it is of utmost importance for the model to be robust to
small perturbations in the parameter setting of interest. But, what do we mean
with that? To answer the later question, we turn ourselves towards the cornerstone
notion of structural stability within the qualitative theory of dynamical system. In
fact, if the phase-portrait of Huang’s model Hλ for a given parameter setting of
interest λ is invariant to small changes in the respective parameter setting, then Hλ

is said to be structural stable. Having defined that, one has that structural stability
is a crucial property to test the similarity-hypothesis.

Further, as we have observed through the course of the simulations, there are
model instances for which the respective dynamical picture of the phase-space changes
abruptly under small perturbations which are evidences for the claim that Huang’s
model is not structural stable. But how structural unstable is the model then?
In fact, intuitively, if we think that such parameter instances, for which the phase
portrait changes under small perturbations, form "surfaces" in R6×N≥2 separating
locally two regions with non-empty interior in which the phase-portrait is qualita-
tively invariant, then we can definitely assert that Huang’s model is in general more
structural stable than unstable. However, an analytical assessment of the later claim
seems to be a very challenging task in the case of Huang’s model, which, a priori,
deviates from the scope of this thesis.

Moreover, it is worth emphasizing that the demonstrations provided for the
(in)stability of the steady states are solely dependent upon the qualitative properties
of the functions defining the nullclines but not on their explicit expressions. Thereby,
it means that the respective demonstrations are also valid for any functions having
the same properties and for all the corresponding primitive scenarios.

However, we have not explored the limit as n → +∞ seeing that we do not
intend to swerve from the main goal of this thesis. Neither have we tried to give
a mathematical account for the claims that we had put forward concerning the
dimension and the measure of the respective transition/critical layer. Furthermore,
it is of utmost importance to emphasizing that, despite being able to envisage the
parameter space as infinite rectangular cylinder parameterized by n ∈ N, we do
not mean whatsoever that n ∈ N must be seen as a generic parameter. In fact,
we have seen through this section that there are conditions that are not realizable
for some values of n ≥ 2. More specifically, we have proved that, for all n ≥ 2,
we can find primitive scenarios in the first main component Hn [C1,X , C1,E] of the
Huang’s qualitative graphical matrix, but it might not be true for the other main
components in which the parameter n ≥ 2 is highly constrained.

3.7 Conclusion
Throughout this chapter, we have stipulated how to find primitive scenarios of
Huang’s model with respect to the number of steady states. The latter essentially
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lays down our rational strategy given that primitive scenarios in our approach are
the counterparts of primitive notions in Frege’s judgement theory. In fact, if sce-
narios are regarded as the counterparts of observations then knowing the primitive
scenarios of the model can potentially lead us to know any scenario of the model,
which means that we can potentially know whether or not an observation is actually
generated by the model. Now, we are in a position to extend the performed analysis
to Semrau-Huang’s model and apply the proposed evaluation procedure to test the
adequacy-hypothesis.
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Chapter 4

An application of the proposed
evaluation to Semrau-Huang’s model

In this chapter, we will perform an evaluation of an extension of Huang’s model that
has been proposed by Dr. Stefan Semrau, which is aimed at adequately explaining
the observations

O
(CHIR+,PD+,LIF+,RA−)
P ,

O
(CHIR−,PD−,LIF−,RA−)
E ,

O
(CHIR−,PD−,LIF−,RA+)
X,E ,

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

,

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E ,

(4.1)

with respect to the experiments described in Section 1.5, in which we found conve-
nient to denote (4.1) by OTS. See that section for notation and description.

In fact, if we draw upon the same approach used to mathematically analyze
Huang’s model then we shall be able to construct a primitive scenario which will
enable us, by means of a rational strategy, to unveil scenarios of Semrau-Huang’s
model which, in turn, could be interpreted as the counterparts of the observations
(4.1).

Furthermore, we will explore the causal relation implicit in the observations
(4.1)4,5. In fact, we shall see that the latter exploration will unravel a peculiar
property of Semrau-Huang’s model which, in turn, will be crucial in the evaluation
of the model itself.

This chapter is organized as follows. Firstly, we build upon similar arguments
displayed in Chapter 3 so as to construct such a primitive scenario. The latter will
unravel all the steady states of the model. Secondly, we will find all the stable steady
states of the respective primitive scenario. Thirdly, we shall test the adequacy-
hypothesis by suitably decomposing a primitive scenario in scenarios similar to some
of the observations. The latter will unveil a crucial property of Semrau-Huang’s
model. Afterwards, we will compute two Andronov-Hopf bifurcations in the model.
Lastly, we will conclude this chapter by summarizing the evaluation of the model
with respect to the similarity- and adequacy-hypothesis.
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4.1 The qualitative graphical matrix of Semrau-Huang’s
model

As thoroughly described in Section 1.5, one has that the dimensionless dynamical
equations of Semrau-Huang’s model read

dX

dt
= aX

Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ),

dE

dt
= aE

En

θnE + En
+ b

1

1 +Xn
− kE(1 + cP ),

dP

dt
= aP

P

1 + P
− kP [1 + c(E + dX)],

(4.2)

with
P = P̂ /θ, X = X̂/θ, E = Ê/θ, θX = θ̂X/θ, θE = θ̂E/θ, (4.3)

and

t = t̂/τ, k = k̂τ, aP = τ âP/θ, aX = τ âX/θ, aE = τ âX/θ, c = θĉ, (4.4)

and d being a dimensionless parameter. Here, we recall that the parameters aP , θX ,
and d are highlighted in red because those are the varying parameters of the model.

Further, we will draw upon the same rationale of Chapter 2 to find the null-
clines of (4.2), which, for this model, are two-dimensional curved surfaces in three-
dimensional state space, typically.

First, note that at a fixed P level one has that

dX

dt
≤ aX + b− kPX, (4.5)

with
kP := k(1 + cP ), (4.6)

so if
X >

aX
kP

+
b

kP
(4.7)

then
dX

dt
< 0. (4.8)

Similarly, one has that if

E >
aE
kP

+
b

kP
(4.9)

then
dE

dt
< 0. (4.10)

Next, we can rewrite (4.2)3 as

dP

dt
= aP

P

1 + P
− kP − kPc(E + dX)), (4.11)

so if
P >

aP
k
− 1 (4.12)
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then
dP

dt
< 0 (4.13)

for any X,E ≥ 0. So, if we define that

Psup := aP/k − 1 > 0,

and that
ĨX :=

[
aX
kPsup

+
b

kPsup
,
aX
k

+
b

k

]
,

and that
ĨE :=

[
0,
aE
k

+
b

k

]
,

and that

α := −

(aPk −1)
(aXk + b

k)[
1−

(
aX

kPsup
+ b
kPsup

)
(aXk + b

k)

] , (4.14)

and that

γ :=
aP
k
− 1[

1−

(
aX

kPsup
+ b
kPsup

)
(aXk + b

k)

] , (4.15)

and that

T :=
{

(X,E, P ) ∈ R3
+ : P = αX + γ, (X,E) ∈ ĨX × ĨE

}
, (4.16)

then we can conclude that the interesting dynamics is confined in the Trapezoidal
prism

(X,E, P ) ∈
[
0,

aX
kPsup

+
b

kPsup

]
×
[
0,

aE
kPsup

+
b

kPsup

]
×
[
0,
aP
k
− 1
]⋃

T, (4.17)

which, in turn, is contained in the rectangular [box] region:

(X,E, P ) ∈
[
0,
aX
k

+
b

k

]
×
[
0,
aE
k

+
b

k

]
×
[
0,
aP
k
− 1
]
. (4.18)

Furthermore, when denoting the vector field of the system of differential equa-
tions in (4.2) by FSH :=

(
F̃1, F̃2, F̃3

)
with

F̃1(X,E, P ) = aX
Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ),

F̃2(X,E, P ) = aE
En

θnE + En
+ b

1

1 +Xn
− kE(1 + cP ),

F̃3(X,E, P ) = aP
P

1 + P
− kP [1 + c(E + dX)],

(4.19)
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one has that, at a level P = p̃ ≥ 0, the projection of the vector field (4.88) onto this
plane is essentially a Huang’s model with degradation rate kp̃ = k(1+ cp̃). However,
it is important to remark that the dynamics of the Semrau-Huang’s model by means
of the (in)stability of the steady states might be different from the one generated by
Huang’s model as we shall see later in this chapter.

4.1.1 The description of the nullclines ĞΨ1,n
, ĞΨ2,n

and ĞΨ3

To begin with, one has that a steady state of (4.2) must satisfy

0 = aX
Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ),

0 = aE
En

θnE + En
+ b

1

1 +Xn
− kE(1 + cP ),

0 = aP
P

1 + P
− kP [1 + c(E + dX)].

(4.20)

However, (4.20)3 is true if and only if

P = 0, (4.21)

or
P =

aP
k [1 + c(E + dX)]

− 1. (4.22)

In fact, for the case P = 0, one has a reduction of (4.2) to Huang’s model, which, in
turn, has already been analyzed in Chapter 3. So, in this chapter, we will entirely
focus on the case shown in (4.22). In fact, for n ≥ 1 and P > 0, if we build upon
Chapter 3 then we define

gP1,n(X) := k(1 + cP )X − aX
Xn

θnX +Xn
,

gP2,n(E) := k(1 + cP )E − aE
En

θnE + En
,

(4.23)

and
hn(Z) := b

1

1 + Zn
(4.24)

for all X,E,Z ≥ 0. If b > 0 then the function defined in (4.24) is invertible, whose
inverse reads

h−1
n (Z̃) =

(
b

Z̃
− 1

) 1
n

, (4.25)

for all Z̃ ∈ (0, b]. Furthermore, it is important to emphasize that both hn and h−1
n

are strictly decreasing functions.
Hence, one can conveniently define

ΨP
1,n := h−1

n ◦ gP1,n, (4.26)

and
ΨP

2,n := h−1
n ◦ gP2,n, (4.27)
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and
Ψ3 :=

aP
k [1 + c(E + dX)]

− 1. (4.28)

Further, given P > 0, define

GΨP1,n
:= {(X,E, P ) ∈ R3

+ : E = ΨP
1,n(X)}, (4.29)

and
GΨP2,n

:= {(X,E, P ) ∈ R3
+ : X = ΨP

2,n(E)}. (4.30)

So, one has that GΨP1,n
and GΨP1,n

are curves on the plane in R3 defined by a fixed
P > 0. Therefore, the X, E, and P nullclines of (4.2) are then given by the sets

ĞΨ1,n =
⋃
P≥0

GΨP1,n
, (4.31)

and
ĞΨ2,n =

⋃
P≥0

GΨP2,n
, (4.32)

and
ĞΨ3 = {(X,E, P ) ∈ R3

+ : P = Ψ3(X,E)}, (4.33)

respectively. Therefore, consistently, one has that (X∗, E∗, P ∗) ∈ R3
+ with P ∗ > 0

satisfies (4.20) if and only if

(X∗, E∗, P ∗) ∈ ĞΨ1,n ∩ ĞΨ2,n ∩ ĞΨ3 , (4.34)

that is, a steady state of (4.2) is a point in R3
+ belonging to the intersection of the

three nullclines (4.31), (4.32), and (4.33); or it has P ∗ = 0 and then it is a steady
state of the Huang’s model.

4.1.2 Geometric aspects as primary aspects of the model:
Semrau-Huang qualitative graphical matrix(
SHn[C̆i,X , C̆j,E, C̆r,P ]

)
i,j,r

Drawing upon the systematic evaluation thoroughly described in Chapter 2 and
concisely summarized in Section 2.8, it is essential to bearing in mind that the
relevant aspects of (4.2) being prioritized concern the number of steady states. In
this regard, a scenario with the maximal number of steady states will be a primitive
scenario. But, how can we fix such a primitive scenario of (4.2) ? In fact, given
k, c, P > 0 and n ≥ 2, recall that

kP = k(1 + cP ). (4.35)

So, under
θX <

aX
2kP

, (4.36)

and
θE <

aE
2kP

, (4.37)
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if we draw upon Chapter 3 then one has that xPb,n > aX/kP and ePb,n > aE/kP are
the unique solutions of the equations

b = kPX − aX
Xn

θnX +Xn
,

b = kPE − aE
En

θnE + En
,

(4.38)

or equivalently, the unique positive real numbers satisfying

b = gP1,n(xPb,n),

b = gP2,n(ePb.n).
(4.39)

Moreover, one has that

xPb,n <
aX
kP

+
b

kP
, (4.40)

and that
ePb,n <

aE
kP

+
b

kP
, (4.41)

with
sup
n
xPb,n =

aX
kP

+
b

kP
, (4.42)

and that
sup
n
ePb,n =

aE
kP

+
b

kP
. (4.43)

Now, if we denote the zeros of the functions gP1,n(X) and gP2,n(X) by

{X ≥ 0 : gP1,n(X) = 0} = {0;xP1,n;xP2,n} (4.44)

and
{E ≥ 0 : gP2,n(E) = 0} = {0; eP1,n; eP2,n} (4.45)

respectively, then

xP1,n < xP2,n < xPb,n <
aX
kP

+
b

kP
(4.46)

and
eP1,n < eP2,n < ePb,n <

aE
kP

+
b

kP
. (4.47)

Next, consistent with Chapter 3, let xPmax,n ∈ [0, xP1,n] denote the unique point in
[0, xP1,n] satisfying

gP1,n(xPmax,n) = max
X∈[0,xP1,n]

gP1,n(X). (4.48)

Likewise, one has that ePmax,n ∈ [0, eP1,n] is the unique point in [0, eP1,n] satisfying

gP2,n(ePmax,n) = max
E∈[0,eP1,n]

gP2,n(E). (4.49)

So, as we have argued in Chapter 3, if one wants to fix a primitive scenario at
level P > 0, under (4.36) and (4.36), then it is sufficient to have that

0 ≤ ΨP
2,n(ePmax,n) < ΨP,−1

1,n |(0,xPmax,n)

(
aE
kP

+
b

kP

)
, (4.50)
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and that
0 ≤ ΨP

1,n(xPmax,n) < ΨP,−1
2,n |(0,ePmax,n)

(
aX
kP

+
b

kP

)
, (4.51)

as one sees in the Figure 4.1.
In order to understand the essence of the conditions (4.50) and (4.51), it is worth

recalling that if gP1,n has a local maximum at xPmax,n then ΨP
1,n has a local minimum

at xPmax,n. Likewise, if gP2,n has a local maximum at ePmax,n then ΨP
2,n has a local

minimum at ePmax,n. Hence, by stipulating the conditions (4.50) and (4.51), we can
sufficiently push downwards the graphs of ΨP

2,n and ΨP
2,n so as to give rise to a

primitive conformation of the nullclines at each level P > 0.
Withal, if we intend fixing a primitive scenario of (4.2) then we need conditions

that are independent upon P > 0. In fact, given that

Ψ3(0, 0) = sup
X,E≥0

Ψ3(X,E)

=
aP
k
− 1,

(4.52)

one can define

k̃ := k
[
1 + c

(aP
k
− 1
)]

so that if the conditions
C̆1,X : θX <

aX

2k̃
(4.53)

and
C̆1,E : θE <

aE

2k̃
(4.54)

hold, then (4.34) and (4.36) hold for all P > 0. Analogously, if

C̆1,n : 0 ≤ ΨP
2,n(ePmax,n) < ΨP,−1

1,n |(0,xPmax,n)

(
aE
k

+
b

k

)
(4.55)

and
C̆2,n : 0 ≤ ΨP

1,n(xPmax,n) < ΨP,−1
2,n |(0,ePmax,n)

(
aX
k

+
b

k

)
(4.56)

hold then (4.50) and (4.51) hold for all P > 0. Moreover, define

bP := min
{
gP1,n(xPmax,n), gP2,n(ePmax,n)

}
(4.57)

for all P ≥ 0. So, if we stipulate the condition

C̆0,n : 0 < b ≤ inf
0≤P≤aP

k
−1
bP (4.58)

then we have that the conditions (4.50) and (4.51) hold for all P > 0. However, it
is important to point that, in this case, one might have to consider an appropriate
extension of ΨP

1,n and ΨP
2,n for which one would have that ΨP

1,n(xPmax,n) = 0 and that
ΨP

2,n(ePmax,n) = 0, for all P > 0.
Further, we note that X,E ≥ 0 satisfy

Ψ3(X,E) = 0 (4.59)
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200Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model

Figure 4.1: Here one sees the illustration of the qualitative behavior of the nullclines
ΨP

1,n (in blue) and ΨP
2,n (in red) of a primitive scenario at level P > 0.

if and only if
1

c

(aP
k
− 1
)

= E + dX, (4.60)

so it is convenient to add the condition

C̆1,P :
1

c

(aP
k
− 1
)
> e

(0)
b,n + dx

(0)
b,n, (4.61)

with e(0)
b,n and x(0)

b,n satisfying

b = kx
(0)
b,n − aX

(x
(0)
b,n)n

θnX + (x
(0)
b,n)n

,

b = ke
(0)
b,n − aE

(e
(0)
b,n)n

θnE + (e
(0)
b,n)n

,

(4.62)

so that the intersection
ĞΨ1,n ∩ ĞΨ2,n ∩ ĞΨ3 (4.63)

200



Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model201

is maximal.
By analogy with Chapter 3, one has that the conditions

C̆1,X : θX <
aX

2k̃
,

C̆1,E : θE <
aE

2k̃
,

C̆2,X :
aX
2k
≤ θX ≤

aX

k̃
,

C̆2,E :
aX
2k
≤ θE ≤

aE

k̃
,

C̆3,X : θX >
aX
k
,

C̆3,E : θE >
aE
k
,

C̆1,P :
1

c

(aP
k
− 1
)
> e

(0)
b,n + dx

(0)
b,n,

(4.64)

can be regarded as the primary [geometrical] aspects of the model.
Thereby, by invoking Chapter 2 and by recalling that N≥2 := {n ∈ N : n ≥ 2},

one can denote the set of the primary aspects of the model by :

Ă :=
{
C̆1,X , C̆1,E, C̆2,X , C̆2,E, C̆3,X , C̆3,E, C̆1,P

}
. (4.65)

So, for λ, λ̃ ∈ Λ̂SH := R9
≥0 × N≥2, one can define

λ ∼Ă λ̃ (4.66)

if and only if
| A[SHλ] |R+=| A[SHλ̃] |R+ , (4.67)

for all A ∈ Ă, with | A |R+ denoting the truth-value of a mathematical assertion
A. Furthermore, one has that SHλ represents Semrau-Huang’s model with a fixed
parameter setting λ ∈ Λ̂SH , while A[SHλ] betokens a formalized mathematical as-
sertion on SHλ. As we have argued in Chapter 2, the binary relation defined in
(4.66) is indeed an equivalence relation.

Hence, for each n ≥ 2, one must have that the sets

SHn[C̆i,X , C̆j,E, C̆1,P ] :=
{
λ ∈ R9

≥0 × {n} : ` C̆i,X∧ ` C̆j,E∧ ` C̆1,P

}
, (4.68)

with i, j ∈ {1, 2, 3}, are equivalence classes; which give rise to a cubic matrix struc-
ture, that is,(

SHn[C̆i,X , C̆j,E, C̆r,P ]
)
i,j,r

:=
⋃
i,j,r

SHn[C̆i,X , C̆j,E, C̆r,P ], (4.69)

with i, j ∈ {1, 2, 3} as seen in Figure 4.3, which, by construction, implies that

Λ̂SH�∼Ă =
⋃
n≥2

(
SHn[C̆i,X , C̆j,E, C̆r,P ]

)
i,j,r

, (4.70)
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202Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model

and we will give an intuitive account in the next section for the description of this
cubic matrix. But, what does the index r stand for ? It stands for a variety of
reformulations of the condition C̆1,P in (4.61).

So far, we have stipulated conditions [primary aspects] with which we have pro-
vided a mathematical description of main components of the parameter space of the
model, that is, ⋃

r 6=1

SHn[C̆1,X , C̆1,E, C̆1,P ] ∪ SHn[C̆1,X , C̆1,E, C̆r,P ],⋃
r 6=1

SHn[C̆3,X , C̆1,E, C̆1,P ] ∪ SHn[C̆3,X , C̆1,E, C̆r,P ],⋃
r 6=1

SHn[C̆1,X , C̆3,E, C̆1,P ] ∪ SHn[C̆1,X , C̆3,E, C̆r,P ],⋃
r 6=1

SHn[C̆3,X , C̆3,E, C̆1,P ] ∪ SHn[C̆1,X , C̆3,E, C̆r,P ].

(4.71)

Furthermore, we have concisely constructed a primitive scenario in

SHn[C̆1,X , C̆1,E, C̆1,P ]

by augmenting it with the conditions C̆0,n, C̆1,n, and C̆2,n provided in (4.58), (4.55),
and (4.56).

Now, consistent with Chapter 3, let xPmin,n ∈ [θX ,∞) denote the unique point
satisfying

gP1,n(xPmin,n) = max
X∈[θX ,+∞)

gP1,n(X). (4.72)

Likewise, one has that ePmin,n ∈ [θX ,∞) is the unique point satisfying

gP2,n(ePmin,n) = max
E∈[θE ,+∞)

gP2,n(E). (4.73)

So, if we invoke that Psup = aP/k− 1 then, by analogy with the approach presented
in Chapter 3, one can see that the conditions

C̆3,n : θX <
aX

k̃

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

C̆4,n : θE <
aE

k̃

n2 − 1

4n

(
n+ 1

n− 1

)1/n

,

C̆5,n : Ψ
Psup
1,n (xmin,n) > sup

0≤P≤aP
k
−1

ΨP,−1
2,n |(ePmin,n,+∞)(xPmin,n),

C̆6,n : Ψ
Psup
2,n (emin,n) > sup

0≤P≤aP
k
−1

ΨP,−1
1,n |(xPmin,n,+∞)(ePmin,n),

(4.74)

are sufficient to find primitive scenarios in the other main components as we shall
see in the next section.
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Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model203

Figure 4.2: Here one sees the nullclines of the model for the primitive scenario scSHλ0
with λ0 = (aP = 2, aX = 0.8, aE = 0.8, θX = 0.5, θE = 0.5, b = 0.0811, c = 0.1, d =
0.5, k = 0.5, n = 4) in six different perspectives.

4.2 A concise description of the scenario space and
the primitive scenarios of the model

Drawing upon the latter section, one has that
˘̆A :=

{
C̆1,X , C̆1,E, C̆2,X , C̆2,E, C̆3,X , C̆3,E, C̆1,P , C̆0,n, C̆1,n, C̆2,n, C̆3,n, C̆4,n, C̆5,n, C̆6,n

}
(4.75)

can be regarded as the set of the relevant aspects of the model. Moreover, as we
have argued in Chapter 2, one has that

SCSH := Λ̂SH�∼ ˘̆
A

= {[λ] : λ ∈ Λ̂SH} (4.76)

defines the scenario space of Semrau-Huang’s model, with [λ] representing an equiv-
alence class.

So, if we build on the argumentation proposed in the latter section then we have
that

SHn[C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, ˘C2,n] := {λ ∈ Λ̂SH : ` C̆1,X∧ ` C̆1,E∧ ` C̆1,P∧
` C̆0,n∧ ` C̆1,n∧ ` ˘C2,n},

(4.77)

is a primitive scenario in SHn[C̆1,X , C̆1,E, C̆1,P ] as shown in Figure 4.2 from several
perspectives. Consistent with Chapter 2, we will denote the primitive scenario in
(4.77) by scSHλ0 wherein λ0 designates any representative of (4.77).
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204Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model

Figure 4.3: Cartoon taken from [84]. Here, one sees the illustration of(
SHn[C̆i,X , C̆j,E, C̆r,P

)
i,j,r

as a qualitative graphical cube matrix with SHn[i, j, r] =

SHn

[
C̆i,X , C̆j,E, C̆r,P

]
.

By analogy with the analysis performed in Chapter 3, one has that

PrimSHn
sc := {SHn

[
C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, C̆2,n

]
,

SHn

[
C̆1,X , C̆3,E, C̆1,P , C̆0,n, C̆1,n, C̆2,n, C̆4,n, C̆6,n

]
,

SHn

[
C̆3,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, C̆2,n, C̆3,n, C̆5,n

]
,

SHn

[
C̆3,X , C̆3,E, C̆1,P , C̆0,n, C̆1,n, C̆2,n, C̆3,n, C̆4,n, C̆5,n, C̆6,n

]
}

(4.78)

is the set of all primitive scenarios in SCSH . So, the elements of PrimSHn
sc correspond

to the primitive scenarios in each of the four main components of Semrau-Huang’s
qualitative graphical matrix as defined in (4.71).

But, why are the conditions (4.55), (4.56), and (4.61) sufficient to fix a primitive
scenario in SHn[C̆1,X , C̆1,E, C̆1,P ]? And, why is the condition (4.61) essential to doing
that? An ’ad hoc argument’ for that reads as follows. First, one observes that if
P2 > P1 > 0 then

gP1
1,n(xP1

max,n) ≤ gP2
1,n(xP2

max,n), (4.79)

which, in turn, implies that

ΨP2
1,n(xP2

max,n) ≤ ΨP1
1,n(xP1

max,n), (4.80)

so the conditions (4.55) and (4.56) guarantee that ΨP
1.n and ΨP

1.n are pulled down-
wards so as to enable their "primitive intersection" in the rectangle [0, xP̃1,n]×[0, eP̃1,n].

Moreover, given P̃ > 0, one has that all the "potential steady-states" at the
level P̃ are contained in the rectangle [0, xP̃b,n] × [0, eP̃b,n]. But, what do we mean
with "potential steady-states" at the P̃ level ? In fact, we mean the points in the
set G

ΨP̃1,n
∩ G

ΨP̃2,n
as illustrated in Figure 4.1. Furthermore, recalling (4.38), if

P2 > P1 > 0 then
xP̃2
b,n < xP̃1

b,n (4.81)

204



Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model205

Figure 4.4: Here, one sees that the total number of steady states of the primitive
scenario in (4.77), with P -component greater than zero, amounts to 9 : zPss,10, zPss,11,
zPss,12, zPss,13, zPss,14, zPss,15, zPss,16, zPss,17, and zPss,18.

and
eP̃2
b,n < eP̃1

b,n, (4.82)

which, in turn, implies that the compact set [0, xP̃b,n] × [0, eP̃b,n] contracts as P >
0 increases. Therefore, recalling that Ψ3 defined in (4.28) is strictly decreasing
as a function of (X,E), one has that the condition (4.61) makes certain that the
cardinality of G

ΨP̃1,n
∩G

ΨP̃2,n
∩G

ΨP̃3
is maximal.

4.3 An intuitive description of the qualitative ma-
trix of the model

But, how many blocks does this cube matrix have then? Although the author of
this thesis is not able to answer the later question, it is possible that we can at
least understand some features thereof. In fact, if we limit ourselves to the number
of ways in which we can reformulate the condition imposed in (4.61) with respect
to the total amount of steady states of the primitive scenario (4.77) then we might
reason as follows.
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Figure 4.5: Here, one sees that the total number of steady states of the primitive
scenario in (4.77) , with P -component equal to zero, amounts to 9 : z0

ss,1, z0
ss,2, z0

ss,3,
z0
ss,4,z0

ss,5,z0
ss,6, z0

ss,7, z0
ss,8 and z0

ss,9.

Indeed, as seen in Figure 4.4, if we acknowledge that the total amount of steady
states of the primitive scenario (4.77), with P -component greater than zero, amounts
to 9, then, given that Ψ3 is strictly decreasing, one has that

2 ≤ #
⋃
r

SHn[C̆1,X , C̆1,E, C̆r,P , C̆1,n, ˘C2,n] ≤
9∑

m=0

(
9

m

)
= 29, (4.83)

with r indexing a reformulation of condition (4.61). So, for instance, r = 0 might
index a hypothetical reformulation of condition (4.61) implying no intersection of the
P -nullcline with the "potential steady states" with P -component greater than zero.
Consistently, r = 1 must index the condition (4.61) itself, which, by construction,
implies the maximal intersection between the X,E, P -nullclines (4.31), (4.32) and
(4.33), with P -component greater than zero. Hence, one has that the number of
blocks with respect to the first main component must be greater than 2, seeing that
there is one block with the maximal number of steady states with P -component
greater than zero, and there is another block with no steady state with P -component
greater than zero.

On the other hand, r = 2 might be thought to represent a reformulation of the
condition (4.61) that would result in

ĞΨ1,n ∩ ĞΨ2,n ∩ ĞΨ3 = {zPss,10, z
P
ss,14}, (4.84)

while r = 3 would lead to a reformulation of (4.61), which, in turn, would imply
that

ĞΨ1,n ∩ ĞΨ2,n ∩ ĞΨ3 = {zPss,10, z
P
ss,11, z

P
ss,12}, (4.85)
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and so on. Of course, by invoking (4.60), it can be the case that there are no
parameter instances for which (4.53), (4.54), (4.55), and (4.56) hold and there exists
a reformulation C̆r,P of (4.61) resulting in

ĞΨ1,n ∩ ĞΨ2,n ∩ ĞΨ3 = {zPss,10, z
P
ss,12}, (4.86)

which, in turn, strongly suggests that
9∑

m=1

(
9

m

)
= 29 is a strict upper bound for the

number of blocks in (4.87), that is,

2 ≤ #
⋃
r

SHn[C̆1,X , C̆1,E, C̆r,P , C̆1,n, ˘C2,n] <
9∑

m=0

(
9

m

)
= 29. (4.87)

As we have already asserted, the total number of steady states of the primi-
tive scenario (4.77) equals 18 with respect to the cases (4.21) and (4.22) as shown
in Figures 4.4 and 4.5. In the next section, we will give an argument for the
determination of the (in)stability of the respective steady states.

4.4 Stability of the steady states
Recalling that kP := k(1 + cP ) is the degradation rate at level P ∈

[
0, aP

k
− 1
]
and

that FSH :=
(
F̃1, F̃2, F̃3

)
represents the vector field of Semrau-Huang’s model with

F̃1(X,E, P ) = aX
Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ),

F̃2(X,E, P ) = aE
En

θnE + En
+ b

1

1 +Xn
− kE(1 + cP ),

F̃3(X,E, P ) = aP
P

1 + P
− kP [1 + c(E + dX)],

(4.88)

so if we denote the state vector by

S =

XE
P


then we have that

dS

dt
= FSH(S) =

F̃1(S)

F̃2(S)

F̃3(S)


corresponds to the dynamical equations in (4.2). Further, if we define

DFH
kP

(X,E) :=

[
DF̃11(X,E, P ) DF̃12(X,E, P )

DF̃21(X,E, P ) DF̃22(X,E, P )

]
then we have that DFH

kP
(X,E) stands for the Jacobian matrix of Huang’s model

with k replaced by kP . If we define

Z0
SH :=

{
z0
ss,1, z

0
ss,2, . . . , z

0
ss,8, z

0
ss,9

}
, (4.89)
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(a) Orbits strongly suggesting that the stable steady states of the primitive
scenario scSH

λ̂0
amount to zPss,10, zPss,11, zPss,12, and zPss,13. So, stable steady

states on the X,E-plane with respect to Huang’s model become unstable
steady states with respect to Semrau-Huang’s model.

(b) Another perspective of the orbits going to the "potential stable steady
states" zPss,10, z

P
ss,11, z

P
ss,12, and zPss,13.

(c) Orbits strongly suggesting a 2-dimensional stable manifold for each of
the saddle steady states z0

ss,1, z0
ss,2, z0

ss,3, and z0
ss,4 of Semrau-Huang’s

model, which, in turn, is consistent with the analysis of Huang’s model,
seeing that, in this case, the respective steady states are stable ones.

Figure 4.6: Here, one sees the numerical simulation of the orbits of the primitive
scenario scSH

λ̂0
with λ̂0 = (aP = 2, aX = 0.8, aE = 0.8, θX = 0.5, θE = 0.5, b =

0.0811, c = 0.1, d = 0.5, k = 0.5, n = 4) in 4 different perspectives.
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and

ZP
SH :=

{
zPss,10, z

P
ss,11, . . . , z

P
ss,17, z

P
ss,18

}
, (4.90)

then we have that
ZSH := Z0

SH ∪ ZP
SH (4.91)

consists of all the equilibria of a primitive scenario of Semrau-Huang’s model.
So, what can we tell about the (in)stability of the steady states of Semrau-

Huang’s model at P = 0? Or equivalently, what happens to the (in)stability of the
steady states of Huang’s model with degradation rate kP = k? In order to answer
this question, we need to demonstrate the following proposition.

Proposition 4.4.1. Let
z∗ = (X∗, E∗, 0) ∈ Z0

SH

denote a hyperbolic steady state at P = 0 for any primitive scenario in PrimSHn
sc .

Then it is true that:

1. If 1
c

(
aP
k
− 1
)
< dX∗+E∗ then (in)stability of (X∗, E∗, 0) for Semrau-Huang’s

model is essentially the same as for Huang’s model;

2. If 1
c

(
aP
k
− 1
)
> dX∗+E∗ then (X∗, E∗, 0) is a saddle or an unstable equilibrium

for Semrau-Huang’s model.

Proof. To begin with, let Id denote the identity operator on R3. Next, one has that
the Jacobian matrix of Semrau-Huang’s model reads

DFSH(X∗, E∗, P ∗) =

DF̃11(X∗, E∗, P ∗) DF̃12(X∗, E∗, P ∗) DF̃13(X∗, E∗, P ∗)

DF̃21(X∗, E∗, P ∗) DF̃22(X∗, E∗, P ∗) DF̃23(X∗, E∗, P ∗)

DF̃31(X∗, E∗, P ∗) DF̃32(X∗, E∗, P ∗) DF̃33(X∗, E∗, P ∗)

 ,
or better,

DFSH(X∗, E∗, P ∗) =


 DFH

kP∗
(X∗, E∗)

 −kcX∗

−kcE∗

−kcdP ∗ −kcP ∗ aP
1

(1+P ∗)2
− k[1 + c(E∗ + dX∗)].


Thus, at P = 0, one has that

Det
(
DFSH(X∗, E∗, 0)− λId

)
= {aP − k[1 + c(E∗ + dX∗)]− λ}×

Det
(
DFH

kP
(X∗, E∗, 0)− λId

)
,

(4.92)

which implies that the eigenvalues of DFSH(X∗, E∗, 0) are λ0 := aP − k[1 + c(E∗ +
dX∗)] and those of Huang’s model, that is,

λ± =
(DF̃11 +DF̃22)±

√
(DF̃11 −DF̃22)2 + 4DF̃12DF̃21

2
, (4.93)
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so if it is true that
1

c

(aP
k
− 1
)
< dX∗ + E∗ (4.94)

then one has that λ0 < 0, which, in turn, by invoking Theorems 3.4.3, 3.4.6, and
3.4.7, implies that the set {z0

ss,1, z
0
ss,2, z

0
ss,3, z

0
ss,4} consists of stable steady states,

whilst the set {z0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9} consists of saddle ones. So, under (4.94),

(in)stability of (X∗, E∗, 0) for Semrau-Huang’s model is essentially as for Huang’s
model, except for z0

ss,7 which, in this case, becomes a saddle equilibrium. On the
other hand, if it is true that

1

c

(aP
k
− 1
)
> dX∗ + E∗ (4.95)

then one has that λ0 > 0, which, in turn, by invoking Theorems 3.4.3, 3.4.4, and
3.4.7, implies that the set {z0

ss,1, z
0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,8, z

0
ss,9} consists of sad-

dle equilibria, while z0
ss,7 is an unstable equilibrium. So, under (4.95), (in)stability

of (X∗, E∗, 0) for Semrau-Huang’s model is in general not the same as for Huang’s
model, except for z0

ss,7 which stays unstable. That completes the proof.

Hence, according to Proposition 4.4.1, the (in)stability of the steady states

{z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9}

of Semrau-Huang’s model is not necessarily the same as in Huang’s model, as shown
in the Figure 4.6. As we see in the respective simulation, as regards the primitive
scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆1,n, ˘C2,n],

each steady state at level P = 0 has an unstable manifold emanating from the
XE-plane with the vector field tangent thereto and pointing outwards from the
XE-plane.

But, what about the steady states of Semrau-Huang’s model at a level P > 0?
Or equivalently, can we say something about the (in)stability of the equilibria in
ZP
SH?
In order to formulate an answer for this question, we will draw upon Routh-

Hurwith’s Theorem, see [76, p. 10-22], which stipulates necessary and sufficient
conditions for the linear stability of an equilibrium of a dynamical system. Regarding
the respective conditions, we will follow the approach presented in [64, p. 507-509].

Theorem 4.4.2 (Routh-Hurwith conditions). Let n = 2N − 1 with N ∈ N \ {0},
{a1, a2, . . . , an−1, an} ⊂ R with an 6= 0, and {λ1, λ2, . . . , λn−1, λn} be the solutions of
the polynomial

p(λ) = λn + a1λ
n−1 + a2λ

n−2 + . . .+ an−1λ+ an.

Then, one has that ∧
i∈{1,2,...,n}

<λi < 0

if and only if
an > 0,
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Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model211

and
D1 = a1 > 0,

and

D2 = Det

([
a1 a3

1 a2

])
= a1a2 − a3 > 0

and

D3 = Det


a1 a3 a5

1 a2 a4

0 a1 a3


 = a1a2a3 + a1a5 − a2

1a4 − a2
3 > 0

and

Dk = DetHk =
∑
σ∈Sk

(
sgn(σ)

N∏
i=1

H
(k)
i,σ(i)

)
> 0

with

Hk :=



a1 a3 a5 . . .
...

1 a2 a4 . . .
...

0 a1 a3 . . .
...

0 1 a2 . . .
...

...
...

... . . . ...
0 0 0 . . . ak


representing the k-nth Routh-Hurwith matrix for which (Hk)i,j = H

(k)
i,j for all k =

1, 2, 3, . . . , n− 1. with (Hk)i,j = H
(k)
i,j . Moreover, Sk denotes the set of all σ permu-

tations of the set k = {1, 2, 3, . . . , n− 1}.

Proof. For an elementary proof, See [35].

Hence, for a cubic polynomial

p(λ) = λ3 + a1λ
2 + a2λ

3 + a3

one has that the Routh-Hurwith conditions reads

∧
i∈{1,2,3}

<λi < 0⇔ ((a3 > 0) ∧ (a1 > 0) ∧ (a1a2 − a3 > 0)) . (4.96)

So, if we want to apply the respective conditions then we need to derive the char-
acteristic polynomial of the Jacobian matrix DFSH of Semrau-Huang’s model. In
fact, one has that
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212Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model

pSH(λ) = Det
(
DFSH − λId

)
= Det


DF̃11 − λ DF̃12 DF̃13

DF̃21 DF̃22 − λ DF̃23

DF̃31 DF̃32 DF̃33 − λ




=
(
DF̃33 − λ

)
Det

([
DF̃11 − λ DF̃12

DF̃21 DF̃22 − λ

])

−DF̃32 Det

([
DF̃11 − λ DF̃13

DF̃22 − λ DF̃23

])

+DF̃31 Det

([
DF̃12 DF̃13

DF̃22 − λ DF̃23

])
,

(4.97)

which implies that

pSH(λ) = λ3 + aSH1 λ2 + aSH2 λ+ aSH3 , (4.98)

wherein, by recalling (4.91), for z∗ = (X∗, E∗, P ∗) ∈ ZSH , one has that

aSH1 (z∗) = −
(
DF̃33(z∗) + TrDFH

kP
(z∗)

)
, (4.99)

and that

aSH2 (z∗) = DetDFH
kP

(z∗) +DF̃33(z∗) TrDFH
kP

(z∗)

+DF̃32(z∗)DF̃23(z∗) +DF̃13(z∗)DF̃31(z∗),
(4.100)

and that

aSH3 = −DF̃33(z∗) DetDFH
kP

(z∗) +DF̃11(z∗)DF̃32(z∗)DF̃23(z∗)

−DF̃21(z∗)DF̃32(z∗)DF̃13(z∗)−DF̃12(z∗)DF̃31(z∗)DF̃23(z∗)

+DF̃22(z∗)DF̃31(z∗)DF̃13(z∗),

(4.101)

with

DF̃11(X∗, E∗, P ∗) = − d

dX
gP
∗

1,n(X∗),

DF̃12(X∗, E∗, P ∗) = −b n(E∗)n−1

[1 + (E∗)n]2
,

DF̃13(X∗, E∗, P ∗) = −kcX∗,

DF̃21(X∗, E∗, P ∗) = −b n(X∗)n−1

[1 + (X∗)n]2
,

DF̃22(X∗, E∗, P ∗) = − d

dE
gP
∗

2,n(E∗),

DF̃23(X∗, E∗, P ∗) = −kcE∗,
DF̃31(X∗, E∗, P ∗) = −kcdP ∗,
DF̃32(X∗, E∗, P ∗) = −kcP ∗,

DF̃33(X∗, E∗, P ∗) = aP
1

(1 + P ∗)2
− k[1 + c(E∗ + dX∗)].

(4.102)

212



Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model213

In order to have a clue as to the (in)stability of a steady state z∗ = (X∗, E∗, P ∗) ∈
ZP
SH , we will either make assumptions about the order of the components X∗, E∗,

and P ∗ or about the order of "key parameters" so as to arrive at suitable approx-
imations. That approach , by means of formal logic, will enable us to access the
stability of the steady states in {zPss,10, z

P
ss,11, z

P
ss,12, z

P
ss,13} by invoking the Routh-

Hurwith Theorem 4.4.2.
Claim 1: aSH1

(
zPss,10

)
> 0

By invoking Theorem 3.4.6, one has that

TrDFH
kP

(zPss,10) < 0. (4.103)

Moreover, given that

ΨP,−1
2,n

(
aX
kP

+
b

kP

)
>

b

kP

1[
1 +

(
aX
kP

+ b
kP

)n] , (4.104)

if we draw on the formula for the inflection point in (3.170), then one has that

b

kP

1[
1 +

(
aX
kP

+ b
kP

)n] < E∗,Pss,10 < θnX

(
n− 1

n+ 1

)1/n

< θX , (4.105)

and that
b

kP

1[
1 +

(
aE
kP

+ b
kP

)n] < X∗,Pss,10 < θnE

(
n− 1

n+ 1

)1/n

< θE. (4.106)

But, we know that
b

kP

1[
1 +

(
aX
kP

+ b
kP

)n] < 1, (4.107)

and that
b

kP

1[
1 +

(
aE
kP

+ b
kP

)n] < 1, (4.108)

so if max{θX , θE} < 1 then we have that

X∗,Pss,10 ≈ O(10−N), (4.109)

and
X∗,Pss,10 ≈ O(10−N), (4.110)

with N > 2, which implies that we can make the approximation

k
[
1 + c

(
E∗,Pss,10 + dX∗,Pss,10

)]
≈ k, , (4.111)

which, in turn, implies that

DF̃33(X∗,Pss,10, E
∗,P
ss,10, P

∗
ss,10) = aP

1

(1 + P ∗ss,10)2
− k[1 + c(E∗ + dX∗)]

≈ aP
1

(1 + P ∗ss,10)2
− k.

(4.112)
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Now, in view of (4.109) and (4.110), one has that

P ∗ss,10 ≈
aP
k
− 1. (4.113)

On one hand, by invoking (4.61), one has that

aP
k
− 1 > 0, (4.114)

if and only if
k < aP , (4.115)

if and only if
k2

aP
< k. (4.116)

On the other hand,
P ∗ss,10 =

aP
k
− 1 (4.117)

if and only if

(1 + P ∗ss,10)2 =
(aP
k

)2

(4.118)

if and only if
k2

aP
=

aP
(1 + P ∗ss,10)2

, (4.119)

which, by building upon (4.116), implies that

aP
(P ∗ss,10 + 1)2

< k, (4.120)

which, in turn, implies that

DF̃33(X∗,Pss,10, E
∗,P
ss,10, P

∗
ss,10) =

aP
(1 + P ∗ss,10)2

− k < 0, (4.121)

and the argument has been raised.
Claim 2: aSH3

(
zPss,10

)
> 0

In view of In view of (4.111), in which E∗,Pss,10 and X∗,Pss,10 are thought to be suffi-
ciently small, one has that

aSH3 (zPss,10) = −DF̃33(zPss,10) DetDFH
kP

(zPss,10) +DF̃11(zPss,10)DF̃32(zPss,10)DF̃23(zPss,10)

−DF̃21(zPss,10)DF̃32(zPss,10)DF̃13(zPss,10)−DF̃12(zPss,10)DF̃31(zPss,10)DF̃23(zPss,10)

+DF̃22(zPss,10)DF̃31(zPss,10)DF̃13(zPss,10)

≈ −DF̃33(zPss,10) DetDFH
kP

(zPss,10)

= −DF̃33(zPss,10)DF̃11(zPss,10)DF̃22(zPss,10).

(4.122)

Now, consistent with Theorem 3.4.6 and with the assumption that E∗,Pss,10 and X∗,Pss,10

are both sufficiently small, one can make the approximation
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DF̃11(zPss,10)DF̃22(zPss,10) ≈ k2
P > 0, (4.123)

with kP = k
(
1 + cP ∗ss,10

)
, which, in turn, by consistently invoking (4.121), implies

that
aSH3 (zPss,10) > 0, (4.124)

and the argument has been raised.
Claim 3: aSH1

(
zPss,10

)
aSH2

(
zPss,10

)
− aSH3

(
zPss,10

)
> 0

If we consistently draw upon (4.109), (4.110), and (4.123) then we arrive at the
approximation

aSH2 (zPss,10) = DetDFH
kP

(zPss,10) +DF̃33(zPss,10) TrDFH
kP

(zPss,10)

+DF̃32(zPss,10)DF̃23(zPss,10) +DF̃13(zPss,10)DF̃31(zPss,10),

≈ DF̃11(zPss,10)DF̃22(zPss,10) +DF̃33(zPss,10) TrDFH
kP

(zPss,10),

(4.125)

which, by invoking (4.276) and (4.122), implies that

aSH1

(
zPss,10

)
aSH2

(
zPss,10

)
− aSH3

(
zPss,10

)
≈ −

(
DF̃33(zPss,10)

)2

TrDFH
kP

(zPss,10)

−DF̃11(zPss,10)DF̃22(zPss,10) TrDFH
kP

(zPss,10)−DF̃33(zPss,10)
(
TrDFH

kP
(zPss,10)

)2
,

(4.126)

and if we now draw on (4.121), (4.103), and (4.123) then we conclude that

aSH1

(
zPss,10

)
aSH2

(
zPss,10

)
− aSH3

(
zPss,10

)
> 0, (4.127)

and the argument has been raised. Therefore, by invoking the Routh-Hurwith The-
orem 4.4.2, we can assert that zPss,10 is possibly stable.

Claim 4: aSH1

(
zPss,13

)
> 0

By invoking Theorem 3.4.6, one has that

TrDFH
kP

(zPss,13) < 0. (4.128)

Now, seeing that

ΨP,−1
2,n

(
aX
kP

+
b

kP

)
>

b

kP

1[
1 +

(
aX
kP

+ b
kP

)n] , (4.129)

and that θX < aX
kP

+ b
kP

, one has that

b

kP

1[
1 +

(
aX
kP

+ b
kP

)n] < E∗,Pss,13 < ΨP,−1
2,n (θX) < θnX

(
n− 1

n+ 1

)1/n

< θX . (4.130)

But, by construction, taking a smaller d favours the existence of zPss,13, so consistent
with (4.111), one can assume that

k
[
1 + c

(
E∗,Pss,13 + dX∗,Pss,13

)]
≈ k, (4.131)
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which implies that

DF̃33(X∗,Pss,13, E
∗,P
ss,13, P

∗
ss,13) = aP

1

(1 + P ∗ss,13)2
− k[1 + c(E∗,Pss,13 + dX∗,Pss,13)]

≈ aP
1

(1 + P ∗ss,13)2
− k

(4.132)

which, in turn, by invoking (4.121) and assuming that

P ∗ss,13

P ∗ss,10

= O(1),

implies that
DF̃33(X∗,Pss,13, E

∗,P
ss,13, P

∗
ss,13) =

aP
(1 + P ∗ss,13)2

− k < 0, (4.133)

and the argument has been raised.
Claim 5: aSH3

(
zPss,13

)
> 0

By invoking (4.131), in which E∗,Pss,13 and d > 0 are thought to be sufficiently
small, consistent with Theorem 3.4.6, one can make the approximation

DetDFH
kP

(zPss,13) ≈ DF̃11(zPss,13)DF̃22(zPss,13) > 0, (4.134)

with kP = k
(
1 + cP ∗ss,13

)
, which, in turn, by consistently invoking (4.133), implies

that

aSH3 (zPss,13) = −DF̃33(zPss,13) DetDFH
kP

(zPss,13)

+DF̃11(zPss,13)DF̃32(zPss,13)DF̃23(zPss,13)−DF̃21(zPss,13)DF̃32(zPss,13)DF̃13(zPss,13)

−DF̃12(zPss,13)DF̃31(zPss,13)DF̃23(zPss,13) +DF̃22(zPss,13)DF̃31(zPss,13)DF̃13(zPss,13)

≈ −DF̃33(zPss,13)DF̃11(zPss,13)DF̃22(zPss,13)−DF̃21(zPss,13)DF̃32(zPss,13)DF̃13(zPss,13) > 0,

(4.135)

or better,
aSH3 (zPss,13) > 0, (4.136)

and the argument has been raised.
Claim 6: aSH1

(
zPss,13

)
aSH2

(
zPss,13

)
− aSH3

(
zPss,13

)
> 0

Consistently, by building on (4.131), in which E∗,Pss,13 > 0 and d > 0 are thought
to be sufficiently small, one has that

aSH2 (zPss,13) = DetDFH
kP

(zPss,13) +DF̃33(zPss,13) TrDFH
kP

(zPss,13)

+DF̃32(zPss,13)DF̃23(zPss,13) +DF̃13(zPss,13)DF̃31(zPss,13),

≈ DF̃11(zPss,13)DF̃22(zPss,13) +DF̃33(zPss,13) TrDFH
kP

(zPss,13),

(4.137)

which, by invoking (4.135), implies that

aSH1

(
zPss,13

)
aSH2

(
zPss,13

)
− aSH3

(
zPss,13

)
≈ −

(
DF̃33(zPss,13)

)2

TrDFH
kP

(zPss,13)

−DF̃11(zPss,13)DF̃22(zPss,13) TrDFH
kP

(zPss,13)−DF̃33(zPss,13)
(
TrDFH

kP
(zPss,13)

)2

+DF̃21(zPss,13)DF̃32(zPss,13)DF̃13(zPss,13).

(4.138)
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So, if we draw on (4.128), (4.134), and (4.133) then we have that

−
(
DF̃33(zPss,13)

)2

TrDFH
kP

(zPss,13)

−DF̃11(zPss,13)DF̃22(zPss,13) TrDFH
kP

(zPss,13)−DF̃33(zPss,13)
(
TrDFH

kP
(zPss,13)

)2
> 0.

(4.139)

However, one has that the last term in (4.178), that is,

DF̃21(zPss,13)DF̃32(zPss,13)DF̃13(zPss,13) = −b
n(X∗,Pss,13)n[

1 + (X∗,Pss,13)n
]2k

2c2P ∗ss,13 < 0 (4.140)

might be a problem to prove Claim 6. In fact, if n > 2 is sufficiently high then
Claim 6 is possibly not valid. However, if we invoke the analysis of Huang’s model
performed in Chapter 3, one has that the parameter b can be chosen as close as
possible to zero without changing the other representatives of the primitive scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, ˘C2,n],

and one would still have a representative for the respective primitive scenario with
the new choice for b > 0 replacing the old one. Therefore, we can assume that b > 0
is compatible with

aSH1

(
zPss,13

)
aSH2

(
zPss,13

)
− aSH3

(
zPss,10

)
> 0, (4.141)

and the argument has been raised. Therefore, by invoking the Routh-Hurwith The-
orem 4.4.2, we can assert that zPss,13 is possibly stable. Nonetheless, as we have just
seen in the argument for the Claim 6, under d > 0 sufficiently small, it can be the
true that this stability can change for n > 2 sufficiently high in a scenario wherein b
is highly constrained. In fact, as we will see in section 4.7, under d > 0 sufficiently
small and n > 2 sufficiently high, one has that the stable equilibrium zPss,13 will give
rise to a stable limit cycle in the scenario

SHn

[
C̆3,X , C̆3,E, C̆−1,P

]
with

C̆−1,P : 0 <
1

c

(aP
k
− 1
)
< e

(0)
b,n + dx

(0)
b,n

as it will be clarified in Section 4.7.
Claim 7: aSH1

(
zPss,11

)
> 0

By invoking Theorem 3.4.6, one has that

TrDFH
kP

(zPss,11) < 0. (4.142)

Now, given that

ΨP,−1
1,n

(
aE
kP

+
b

kP

)
>

b

kP

1[
1 +

(
aE
kP

+ b
kP

)n] , (4.143)
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and that θE < aE
kP

+ b
kP

, one has that

b

kP

1[
1 +

(
aE
kP

+ b
kP

)n] < X∗,Pss,13 < ΨP,−1
1,n (θE) < θnE

(
n− 1

n+ 1

)1/n

< θE, (4.144)

so, consistent with d > 0 being sufficiently small in (4.131), one can assume that

k[1 + c(E∗,Pss,11 + dX∗,Pss,11)] ≈ k(1 + cE∗,Pss,11), (4.145)

which implies that

DF̃33(X∗,Pss,11, E
∗,P
ss,11, P

∗
ss,11) =

aP
(1 + P ∗ss,11)2

− k[1 + c(E∗,Pss,11 + dX∗,Pss,11)]

≈ aP
(1 + P ∗ss,11)2

− k(1 + cE∗,Pss,11).
(4.146)

So, if we now rely upon the symmetry of Huang’s model then one can assume that

Pss,11

Pss,10

= O(1),

which, in turn, by invoking (4.121), implies that

DF̃33(X∗,Pss,11, E
∗,P
ss,11, P

∗
ss,11) =

aP
(1 + P ∗ss,11)2

− k(1 + cE∗,Pss,11) < 0, (4.147)

and the argument has been raised.
Claim 8: aSH3

(
zPss,11

)
> 0

By invoking (4.145), in which X∗,Pss,11 and d > 0 are thought to be sufficiently
small, consistent with Theorem 3.4.6, one can make the approximation

DetDFH
kP

(zPss,11) ≈ DF̃11(zPss,11)DF̃22(zPss,11) > 0, (4.148)

with kP = k
(
1 + cP ∗ss,11

)
, which, in turn, implies that

aSH3 (zPss,11) = −DF̃33(zPss,11) DetDFH
kP

(zPss,11)

+DF̃11(zPss,11)DF̃32(zPss,11)DF̃23(zPss,11)−DF̃21(zPss,11)DF̃32(zPss,11)DF̃13(zPss,11)

−DF̃12(zPss,11)DF̃31(zPss,11)DF̃23(zPss,11) +DF̃22(zPss,11)DF̃31(zPss,11)DF̃13(zPss,11)

≈ −DF̃33(zPss,11)DF̃11(zPss,11)DF̃22(zPss,11) +DF̃11(zPss,11)DF̃32(zPss,11)DF̃23(zPss,11).

(4.149)

Next, if X∗,Pss,11 is sufficiently small then

DF̃11(zPss,11) ≈ −kP . (4.150)

So, recalling that k̃ := k
[
1 + c

(
aP
k
− 1
)]
, if we invoke (4.54), that is,

θE <
aE

2k̃
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and if we assume that E∗,Pss,11 ≈ aE
kP

then we can make the approximation

DF̃22(zPss,11) ≈ −

kP − naE θnE(
aE
kP

)n+1


(
aE
kP

)n
(
θnE +

(
aE
kP

)n)
2


= −

kP − naE
(
θE
aE
kP

)n
kP
aE


(
aE
kP

)n
(
θnE +

(
aE
kP

)n)
2


≈ −
[
kP − naE

(
1

2k̃

)n
kP
aE

1

4

]
,

≈ −
(
kP − n

1

2n+2

kP

k̃n

)
,

(4.151)

with kP = k(1 + cP ∗ss,11), which, in turn, seeing that

kP

k̃n
< 1,

becomes

DF̃22(zPss,11) ≈ −
(
kP −

n

2n+2

)
, (4.152)

and, by using (4.150) and by recalling (4.148), we have that

DF̃11(zPss,11)DF̃22(zPss,11) ≈ k2
P − kP

n

2n+2
> 0, (4.153)

which, by drawing on the inequality

n < 2n+2

with n ≥ 2, implies that

kP = k(1 + cP ∗ss,11) >
n

2n+2
, (4.154)

or rather,

kP >
1

8
. (4.155)

So, under X∗,Pss,11 and d > 0 sufficiently small, if we draw upon the approximation
(4.153) then we arrive at

aSH3 (zPss,11) ≈
[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

](
k2
P − kP

n

2n+2

)
− kPk2c2P ∗ss,11E

∗
ss,11.

(4.156)

But, one has that

aSH3 (zPss,11) ≈
[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

](
k2
P − kP

n

2n+2

)
−kPk2c2P ∗ss,11E

∗
ss,11 ≤ 0

(4.157)
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if and only if[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

](
k2
P − kP

n

2n+2

)
≤ kPk

2c2P ∗ss,11E
∗
ss,11, (4.158)

if and only if

1

P ∗ss,11E
∗
ss,11

[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

]
1

kPk2c2

(
k2
P − kP

n

2n+2

)
≤ 1, (4.159)

which implies that or
1

kPk2c2

(
k2
P − kP

n

2n+2

)
≤ 1 (4.160)

or
1

P ∗ss,11E
∗
ss,11

[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

]
≤ 1. (4.161)

In fact, if it is true that

1

kPk2c2

(
k2
P − kP

n

2n+2

)
≤ 1, (4.162)

then
kP −

n

2n+2
≤ kc, (4.163)

but, one has that
lim

n→+∞

n

2n+2
= 0, (4.164)

which, implies that
kP ≤ kc, (4.165)

and if kc ≤ κ1
8
with κ ≤ 1 then

kP ≤
1

8
, (4.166)

which, in view of (4.155), is a contradiction. On other hand, if it is true that

1

P ∗ss,11E
∗
ss,11

[
k(1 + cE∗,Pss,11)− aP

(1 + P ∗ss,11)2

]
≤ 1, (4.167)

and if we recall that we are under the hypothesis thatX∗ss,11 and d > 0 are sufficiently
small, by drawing on the approximation

P ∗ss,11 = Ψ3(X∗ss,11, E
∗
ss,11) =

aP

k
[
1 + c

(
E∗ss,11 + dX∗ss,11

)]
≈ aP

k
(
1 + cE∗ss,11

) , (4.168)

then one has that [
aP
P ∗ss,11

− aP
(1 + P ∗ss,11)2

]
≤ P ∗ss,11E

∗
ss,11, (4.169)
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which implies that

aP
P ∗ss,11

[
1−

P ∗ss,11

(1 + P ∗ss,11)2

]
≤ P ∗ss,11E

∗
ss,11, (4.170)

which implies that

aP

[
1−

P ∗ss,11

(1 + P ∗ss,11)2

]
≤
(
P ∗ss,11

)2
E∗ss,11, (4.171)

and using that the left hand side of (4.171) is at most aP , one arrives at

aP ≤
(
P ∗ss,11

)2
E∗ss,11. (4.172)

Now, recalling that
P ∗ss,11

P ∗ss,10

= O(1),

one can use the approximations

P ∗ss,11 ≈
(aP
k
− 1
)

and
E∗ss,11 ≈

aE
kP

in the right hand side of (4.172) to arrive at

aP ≤
(aP
k
− 1
) aE
kP

≤
(aP
k

)2 aE
kP

(4.173)

which, in turn, implies that

kP ≤
aPaE
k2

. (4.174)

So, by recalling (4.166), if it is true that

aPaE
k2
≤ κ1

1

8

with κ1 ≤ 1 then we arrive at the contradiction

kP <
1

8
, (4.175)

which, in turn, implies that
aSH3 (zPss,13) > 0, (4.176)

and the argument has been raised.
Claim 9: aSH1

(
zPss,11

)
aSH2

(
zPss,11

)
− aSH3

(
zPss,11

)
> 0

Consistently, by building on (4.145), in which X∗,Pss,11 > 0 and d > 0 are thought
to be sufficiently small, one has that
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aSH2 (zPss,11) = DetDFH
kP

(zPss,11) +DF̃33(zPss,11) TrDFH
kP

(zPss,11)

+DF̃32(zPss,11)DF̃23(zPss,11) +DF̃13(zPss,11)DF̃31(zPss,11),

≈ DetDFH
kP

(zPss,11)

+DF̃33(zPss,11) TrDFH
kP

(zPss,11) +DF̃32(zPss,11)DF̃23(zPss,11),

(4.177)

which, by invoking (4.149) and (4.148), implies that

aSH1

(
zPss,11

)
aSH2

(
zPss,11

)
− aSH3

(
zPss,11

)
≈ −

(
DF̃33(zPss,11)

)2

TrDFH
kP

(zPss,11)

−DetDFH
kP

(zPss,11) TrDFH
kP

(zPss,11)−DF̃33(zPss,11)
(
TrDFH

kP
(zPss,11)

)2

−DF̃33(zPss,11)DF̃32(zPss,11)DF̃23(zPss,11)− TrDFH
kP

(zPss,11)DF̃32(zPss,11)DF̃23(zPss,11)

−DF̃11(zPss,11)DF̃32(zPss,11)DF̃23(zPss,11).

(4.178)

So, if we draw on (4.142) and (4.147) then we have that

aSH1

(
zPss,11

)
aSH2

(
zPss,11

)
− aSH3

(
zPss,11

)
> 0, (4.179)

and the argument has been raised. Therefore, by invoking the Routh-Hurwith The-
orem 4.4.2, we can assert that zPss,11 is possibly stable. However, it is worth to
recall that our reasoning has been consistently performed under the assumption
that d > 0 is sufficiently small. Due to the symmetry of the degradation term of
Semrau-Huang’s model, that is,

−kP [1 + c(E + dX)],

if we had assumed that c > 0 was sufficiently small so as to eliminate the terms
containing c, seeing that c > 0 favors the existence of zPss,11, then we would have
arrived at the conclusion that, for n > 2 sufficiently high, one has that this stability
might change. In fact, as we will see in section 4.7, under c > 0 sufficiently small
and n > 2 sufficiently high, one has that the stable equilibrium zPss,11 will give rise to
a stable limit cycle. So, it seems that our reasoning is consistent with the paradigm
involving oscillations, that is, the interplay between a fast positive feedback and
a slow negative feedback being outrageously manifested through the relationship
enclosed by the parameters d and c.

Claim 10: aSH1

(
zPss,12

)
> 0

By invoking Theorem 3.4.6, one has that

TrDFH
kP

(zPss,12) < 0. (4.180)

So, consistently with d > 0 sufficiently small, one can assume that

k[1 + c(E∗,Pss,12 + dX∗,Pss,12)] ≈ k(1 + cE∗,Pss,12), (4.181)

which, under the hypothesis
P ∗ss,12

Pss,10

= O(1),
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by recalling (4.111), implies that

DF̃33(X∗,Pss,12, E
∗,P
ss,12, P

∗
ss,12) =

aP
(1 + P ∗ss,12)2

− k[1 + c(E∗,Pss,12 + dX∗,Pss,12)]

≈ aP
(1 + P ∗ss,12)2

− k(1 + cE∗,Pss,12) < 0,
(4.182)

and the argument has been raised.
Claim 11: aSH3

(
zPss,12

)
> 0

By invoking (4.182), in which d > 0 is thought to be sufficiently small, consistent
with Theorem 3.4.6, one can make the approximation

DetDFH
kP

(zPss,12) ≈ DF̃11(zPss,12)DF̃22(zPss,12) > 0, (4.183)

with kP = k
(
1 + cP ∗ss,12

)
, which, in turn, implies that

aSH3 (zPss,12) = −DF̃33(zPss,12) DetDFH
kP

(zPss,12)

+DF̃11(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)−DF̃21(zPss,11)DF̃32(zPss,12)DF̃13(zPss,12)

−DF̃12(zPss,12)DF̃31(zPss,12)DF̃23(zPss,12) +DF̃22(zPss,12)DF̃31(zPss,12)DF̃13(zPss,12)

≈ −DF̃33(zPss,12)DF̃11(zPss,12)DF̃22(zPss,12)

+DF̃11(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)−DF̃21(zPss,11)DF̃32(zPss,12)DF̃13(zPss,12).

(4.184)

Next, recalling that k̃ := k
[
1 + c

(
aP
k
− 1
)]
, if we invoke (4.53) and (4.54), that is,

θX <
aX

2k̃

and
θE <

aE

2k̃
,

and if we assume that
E∗,Pss,11 ≈

aE
kP

and that
X∗,Pss,11 ≈

aX
kP

then we can make the approximation

DF̃11(zPss,11)DF̃22(zPss,11) ≈
(
kP − n

1

2n+2

kP

k̃n

)2

, (4.185)

with kP = k(1 + cP ∗ss,11), which, in turn, seeing that

kP

k̃n
< 1,

becomes

DF̃11(zPss,11)DF̃22(zPss,11) ≈
(
kP −

n

2n+2

)2

. (4.186)
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Hence, we can rely upon the same argument of Claim 8 so as to conclude that

aSH3 (zPss,12) > 0, (4.187)

and the argument has been raised.
Claim12: aSH1

(
zPss,12

)
aSH2

(
zPss,12

)
− aSH3

(
zPss,12

)
> 0

Consistently, by using the assumption that d > 0 is sufficiently small, one has
that

aSH2 (zPss,12) = DetDFH
kP

(zPss,12) +DF̃33(zPss,12) TrDFH
kP

(zPss,12)

+DF̃32(zPss,12)DF̃23(zPss,12) +DF̃13(zPss,12)DF̃31(zPss,12),

≈ DetDFH
kP

(zPss,12) +DF̃33(zPss,12) TrDFH
kP

(zPss,12) +DF̃32(zPss,12)DF̃23(zPss,12),

(4.188)

which implies that

aSH1

(
zPss,12

)
aSH2

(
zPss,12

)
− aSH3

(
zPss,12

)
≈ −

(
DF̃33(zPss,12)

)2

TrDFH
kP

(zPss,12)

−DetDFH
kP

(zPss,12) TrDFH
kP

(zPss,12)−DF̃33(zPss,12)
(
TrDFH

kP
(zPss,12)

)2

−DF̃33(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)− TrDFH
kP

(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)

−DF̃11(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12) +DF̃21(zPss,12)DF̃32(zPss,12)DF̃13(zPss,12).

(4.189)

Now, if we invoke Theorem 3.4.6 then we can assert that

DetDFH
kP

(zPss,12) ≥ 0, (4.190)

so if we draw on (4.180) and (4.182) then we have that

−
(
DF̃33(zPss,12)

)2

TrDFH
kP

(zPss,12)

−DetDFH
kP

(zPss,12) TrDFH
kP

(zPss,12)−DF̃33(zPss,12)
(
TrDFH

kP
(zPss,12)

)2

−DF̃33(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)− TrDFH
kP

(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12)

−DF̃11(zPss,12)DF̃32(zPss,12)DF̃23(zPss,12) > 0.

(4.191)

Moreover, one has that the last term on the right hand side of the approximation
(4.189), that is,

DF̃21(zPss,12)DF̃32(zPss,12)DF̃13(zPss,12) = −b
n(X∗,Pss,12)n[

1 + (X∗,Pss,12)n
]2k

2c2P ∗ss,12 < 0 (4.192)

seems not to be a problem. In fact, if we rely upon the argument for Claim 6 then
we build upon the analysis of Huang’s model performed in Chapter 3 to recall that
the parameter b can be chosen as close as possible to zero without changing the
other representatives of the primitive scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, ˘C2,n],
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and one would still have a representative for the respective primitive scenario with
the new choice for b > 0 replacing the old one. Hence, we assume that b > 0 is
compatible with

aSH1

(
zPss,12

)
aSH2

(
zPss,12

)
− aSH3

(
zPss,12

)
> 0, (4.193)

and the argument has been raised. Therefore, one has that zPss,12 is possible stable.
Thereby, we have seen that the set {zPss,10, z

P
ss,11, z

P
ss,12, z

P
ss,13} possibly consists of

stable steady states. In fact, the correctness of our reasoning can be strengthened
by the numerical experiments shown in Figures 4.6a and 4.6b. But, what about
the steady states in {zPss,14, z

P
ss,15, z

P
ss,16, z

P
ss,17, z

P
ss,18}? Provided that our approach is

mainly based on approximations of the components of each steady state, it is defi-
nitely not suitable to access the (in)stability of these steady states in the respective
set. However, our numerical experiments in Figures 4.6a and 4.6b indicate that
the set {zPss,14, z

P
ss,15, z

P
ss,16, z

P
ss,17, z

P
ss,18} is possibly comprised by unstable or saddle

steady states. Therefore, with respect to the primitive scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆1,n, ˘C2,n], (4.194)

one has that from 18 steady states, only 4 are stable ones. In fact, the set

{zPss,10, z
P
ss,11, z

P
ss,12, z

P
ss,13}

consists of stable equilibria, whilst the set

{z0
ss,1, z

0
ss,2, z

0
ss,3, z

0
ss,4, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

0
ss,8, z

0
ss,9, z

P
ss,14, z

P
ss,15, z

P
ss,16, z

P
ss,17, z

P
ss,18}

consists of unstable or saddle equilibria.

4.5 An example of a rational decomposition of the
primitive scenario SHn[C̆1,X , C̆1,E, C̆1,P , C̆1,n, C̆2,n]

In Chapter 2, we have introduced a systematic evaluation of a phenomenological
mathematical model grounded in Frege’s judgment theory. In the latter, one has that
the concept of primitive notion is of uttermost importance owing to the fact that
it provides a way of defining concepts sequentially. The latter essentially stipulates
our rational strategy given that primitive scenarios play the role of primitive notions
in our approach.

Bearing in mind that the relevant aspect in our evaluation of Semrau-Huang’s
model is the number of steady states, one has that knowing the primitive scenarios
of the respective model, that is, the ones with the maximal number of steady states,
can potentially lead us to know any scenario of the model, which means that we can
potentially know whether or not the observations in (4.1) are actually generated by
Semrau-Huang’s model.

But, how will we execute suitable judgements upon the primitive scenario

scSHλ0 = SHn[C̆1,X , C̆1,E, C̆1,P , C̆1,n, ˘C2,n], (4.195)

with λ0 being any representative of (4.77), which, in turn, will unveil scenarios
similar to the observations in (4.1)? Or rather, how can we shift the primitive
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Figure 4.7: scSH
λ̂0

Figure 4.8: scSH
λ̂1

Figure 4.9: scSH
λ̂2

Figure 4.10: scSH
λ̂3

Figure 4.11: scSH
λ̂4

Figure 4.12: scSH
λ̂5
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scenario (4.195) through the scenario space of Semrau-Huang’s model in such a way
that we can find scenarios that could be interpreted as the observations in (4.1)? In
fact, we need to know how to construct Π̄q−functions, q ∈ {1, 2, 3, . . . ,m}, defined
on SCSH with which one has that

scSHλ = Π̄m ◦ Π̄m−1 . . . ◦ Π̄2 ◦ Π̄1[scMλ0 ] (4.196)

or that

scSHλ0
Π̄1−→ scSHλ1

Π̄2−→ scSHλ2
Π̄3−→ . . .

Π̄m−2−→ scSHλm−2

Π̄m−1−→ scMλm−1

Π̄m−→ scSHλ , (4.197)

such that
scSHλ ∼ O (4.198)

for some O ∈ OTS.
First of all, we need to discriminate the steady states of scSHλ0 , that is, we need to

indicate which steady states thereof are suitable to explain each of the observations
in OTS. In fact, by invoking the intentions of the modeling agent described in Section
1.5, if we carry out a closer inspection of the primitive scenario (4.195) then we can
assert that it is sufficient to orientating ourselves towards steady states qualitatively
similar to the steady states z0

ss,2, z
0
ss,4, z

P
ss,10, and zPss,11, seen in Figures 4.4 and

4.5, so as to explain the observations in (4.1). In fact, one has that z0
ss,2 can be

interpreted as the Ecto-like cells, z0
ss,4 as the Xen-like cells, zPss,10 as the Pluripotent

cells, and zPss,11 as the Jammed cells.
To begin with, consistent with the claim that we ought to direct our evaluation

at scenarios containing steady states qualitatively similar to

z0
ss,2, z

0
ss,4, z

P
ss,10, z

P
ss,11 (4.199)

then it seems that the first judgment concerns the destruction of the steady states

z0
ss,1, z

0
ss,5, z

0
ss,6, z

0
ss,7, z

P
ss,14, z

P
ss,15, z

P
ss,16, (4.200)

which, by inspecting Figure 4.1, can be executed by stipulating the sufficient con-
dition

b >scSHλ0
max

0≤P≤(aPk −1)

{
gP1.n(xPmax,n)[(eP1,n)n + 1]; gP2.n(ePmax,n)[(xP1,n)n + 1]

}
,

(4.201)
which, by invoking that

scSH
λ̂0

=[aP=2,aX=0.8,aE=0.8,θX=0.5,θE=0.5,b=0.0811,c=0.1,d=0.5,k=0.5,n=4], (4.202)

implies that
b > 0.119628, (4.203)

which, in turn, is satisfied by b̂ = 0.3. Moreover, one has that the symbol >scSHλ0
betokens that the inequality > must be verified by using all the components of the
respective representative of the primitive scenario scSHλ0 except for the component
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Figure 4.13: scSH
λ̂6

Figure 4.14: scSH
λ̂7

Figure 4.15: scSH
λ̂8 Figure 4.16: scSH

λ̂9

Figure 4.17: scSH
λ̂10

Figure 4.18: scSH
λ̂11
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Figure 4.19: scSH
λ̂7
∼O

(CHIR+,PD+,LIF+,RA−)
P

Figure 4.20: scSH
λ̂8
∼O

(CHIR−,PD−,LIF−,RA−)
E

Figure 4.21: scSH
λ̂9
∼O

(CHIR−,PD−,LIF−,RA+)
X,E Figure 4.22: scSH

λ̂10
6∼O

(CHIR−,PD+,LIF−,RA+)
JE,E

Figure 4.23: scSH
λ̂11

6∼

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E
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being shifted, in this case, b. So, we see in Figures 4.7 and 4.8 that shifting from
the primitive scenario scSHλ0 to the scenario

scSH
λ̂1

=[aP=2,aX=0.8,aE=0.8,θX=0.5,θE=0.5,b̂=0.3,c=0.1,d=0.5,k=0.5,n=4], (4.204)

seems to be a suitable rational movement in the decomposition process. Nonetheless,
one has that the steady state zPss,10 has also been destroyed, what demands a conve-
nient strategy throughout the decomposition process that will enable us to recover
the counterpart of the respective steady state in some of the produced scenarios. In
fact, such a state is suitable to explain the observation (4.1)1 thus indispensable in
our decomposition.

Next, as we will need to appeal to the curvature of the nullclines in the decom-
position process, it is convenient to compute the second derivative of each of the
defining maps. In fact, one has that

d2

dX2
ΨP

1,n(X) =
d2

dX2
h−1,P
n

(
gP1,n(X)

)( d

dX
gP1,n(X)

)2

+
d

dX
h−1,P
n

(
gP1,n(X)

) d2

dX2
gP1,n(X)

=
1

n

(
b

gP1,n(X)
− 1

)−(1− 1
n) b

(gP1,n(X))3

2− b

gP1,n(X)

(
1− 1

n

)(
b

gP1,n(X)
− 1
)
× d

dX
gP1,n(X)

− 1

n

(
b

gP1,n(X)
− 1

)−(1− 1
n) b

(gP1,n(X))2
× d2

dX2
gP1,n(X),

(4.205)

with gP1,n(X) being defined in (4.23), while

d

dX
gP1,n(X) = kP − naXθnX

Xn−1

(θnX +Xn)2
(4.206)

and

d2

dX2
gP1,n(X) = −naX

θnX
(θnX +Xn)3

Xn−2 [(n− 1)θnX − (n+ 1)Xn] (4.207)

with kP = k(1 + cP ) being defined in (4.35). Likewise, we can derive a similar
expression for d2

dX2 ΨP
2,n(X). Moreover, one has that

∂2

∂X2
Ψ3(X,E) = 2aP c

2d2 1

k [1 + c(E + dX)]3
(4.208)

and that

∂2

∂E2
Ψ3(X,E) = 2aP c

2 1

k [1 + c(E + dX)]3
. (4.209)

Having done that, it now seems reasonable to shift the scenario scSHλ1 to a scenario
in which ΨP

1,n and ΨP
2,n are continuous functions for all P ≥ 0. But, which parameter

should we be changing then? In fact, by construction of
(
SHn[C̆i,X , C̆j,E, C̆r,P ]

)
i,j,r

,

if it is true that
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k > max

{
aX
θX
,
aE
θE

}
(4.210)

then ΨP
1,n and ΨP

1,n are both continuous in view of (4.64)5,6. Hence, in the case
of scSH

λ̂1
, it is sufficient to choose k ≥ 1.6. However, choosing k > 1.6 can lead

us to a scenario in SCSH wherein much of the existent information in scSH
λ̂1

would
have been lost or altered drastically. But, what do we mean with the phrase "the
existent information"? In fact, the latter refers to the number of steady states, their
respective stability and location with respect to each other.

However, how can we choose for k > 0 with which one has that ΨP
1,n and ΨP

2,n will
be both continuous without changing the information carried by the scenario scSH

λ̂1
?

In fact, if we now invoke the elucidations of Section 2.8 concerning the essence of
the critical layer of the scenario space of a model, then we conjecture that we can
find 0.5 < k̂ < 1.6 which suits the purpose. Here, by invoking Chapter 2, we are
implicitly asserting that, in the critical layer, one can find scenarios similar to the
ones expected to be found in the main components of the parameter space of the
model.

Hence, if we choose k̂ = 1 then shifting the scenario scSH
λ̂1

to the scenario

scSH
λ̂2

=[aP=2,aX=0.8,aE=0.8,θX=0.5,θE=0.5,b̂=0.3,c=0.1,d=0.5,k̂=1,n=4], (4.211)

has precisely the aforesaid description as seen in Figures 4.8 and 4.9, respectively.
Consistently, by invoking (4.72) and (4.73) for the definition of xPmin,n and ePmin,n,
whichever the latter choice for 0.5 < k̂ < 1.6 is, one has that it must be constrained
to the condition

b̂ >scSH
λ̂2

max
0≤P≤(aP

k̂
−1)

{
gP1.n(xPmax,n)[(ePmin,n)n + 1]; gP2.n(ePmax,n)[(xPmin,n)n + 1]

}
.

(4.212)
Otherwise, one would end up in a scenario containing the counterparts of the steady
states z0

ss,1, z
0
ss,5, z

0
ss,6, z

0
ss,7, z

P
ss,10, z

P
ss,14, z

P
ss,15, and zPss,16, wherein ΨP

1,n and ΨP
2,n would

be both continuous. In fact, for k̂ = 1, one has that

max
0≤P≤(aP

k̂
−1)

{
gP1.n(xPmax,n)[(ePmin,n)n + 1]; gP2.n(ePmax,n)[(xPmin,n)n + 1]

}
≈ 0.2734148

< b̂ = 0.3,

(4.213)

so (4.212) is indeed satisfied for k̂ = 1.
Now, one has that the next judgment entails the destruction of the counterparts

in the scenario scSH
λ̂2

of the steady states z0
ss,8, z

0
ss,9, z

P
ss,17, and zPss,18 in the primitive

scenario scSH
λ̂0

. In fact, as illustrated in Figures 4.24 and 4.25, by inspection of the
scenario scSH

λ̂2
, one has that it is sufficient to have that

Ψ1,n(xmin,n) < Ψ−1
2,n(xmin,n), (4.214)
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Figure 4.24: Here, one sees the scenario scSH
λ̂2

on the plane P = 0. How to destroy
the steady states z0

ss,8 and z0
ss,9 ? In fact, one can do it by considering geometric

aspects hereof. Likewise, one can destroy the steady states zPss,17 and zP18.

and that

Ψ2,n(emin,n) < Ψ−1
1,n(emin,n), (4.215)

in which, recalling Chapter 3, one has that

g1,n(xmin,n) = inf
X∈[xmax,n,∞)

g1,n(X), (4.216)

and that
g2,n(emin,n) = inf

E∈[emax,n,∞)
g2,n(E). (4.217)

To apprehend (4.214), one can work out the equality

Ψ1,n(xmin,n) =

(
b

g1,n(xmin,n)
− 1

) 1
n

= Ψ−1
2,n(xmin,n), (4.218)

which implies that (
b

g1,n(xmin,n)
− 1

) 1
n

= Ê, (4.219)
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Figure 4.25: Here, one sees clearly that conditions (4.214) and (4.215) are sufficient
to extirpate the steady states z0

ss,8, z0
ss,9, zPss,17 and zPss,18 disappear as well. But, how

to change the stability of z0
ss,3 ? In fact, we see in the illustration that accounting for

the role of the inflection points, xinf,n and einf,n, in keeping the respective geometric
aspect, is of utmost importance.

with Ê = Ψ−1
2,n(xmin,n) satisfying

kÊ − aE
Ên

θnE + Ên
=

b

1 + (xmin,n)n
, (4.220)

which, implies that

Ê >
b

k [1 + (xmin,n)n]
. (4.221)

Hence, using (4.221) in (4.219) implies that

k [1 + (xmin,n)n]

(
b

g1,n(xmin,n)
− 1

) 1
n

> b, (4.222)

or equivalently

1

kn [1 + (xmin,n)n]n
bn − b

g1,n(xmin,n)
+ 1 < 0, (4.223)
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which, in turn, implies that

b > g1,n(xmin,n). (4.224)

By drawing on (4.215), one can work out a similar argument so as to arrive at

1

kn [1 + (emin,n)n]n
bn − b

g2,n(emin,n)
+ 1 < 0, (4.225)

which, in turn, implies that
b > g2,n(emin,n). (4.226)

So, if we now define
f(b) = a0,nb

n − a1,nb+ 1, (4.227)

such that
a0,n :=

1

kn [1 + (xmin,n)n]n
, (4.228)

and
a1,n :=

1

g1,n(xmin,n)
, (4.229)

then one has that
f ′(b) = a0,nnb

n−1 − a1,n, (4.230)

and that
f ′′(b) = a0,nn(n− 1)bn−2 ≥ 0. (4.231)

Thereby, (4.231) implies that the graph of f is convex, while (4.230) implies that

f ′(b) = 0, (4.232)

if and only if

b = bc =

(
1

n

a1,n

a0,n

) 1
n−1

, (4.233)

so, for b < bc, one has that f ′(b) < 0, while, for b > bc, one has that f ′(b) > 0,
which, in turn, implies that

f(bc) = min
b≥0

f(b). (4.234)

In fact, with respect to the scenario scSH
λ̂2

, one has that

bc ≈ 2.01, (4.235)

and that
f(bc) ≈ −25.40, (4.236)

which, in turn, by drawing upon Bolzano’s theorem (see [77, p. 93]), given that
f is a continuous function for b ≥ 0, implies that there exist b1, b2 > 0 such that
f(b1) = 0 = f(b2) with 0 < b1 < bc and bc < b2. In fact, one has that

b1 ≈ 0.06, (4.237)
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Figure 4.26: Here, one can clearly see that the steady states z0
ss,7 and z0

ss,8 have been
destroyed in the scenario scSHϕ . Likewise, one sees that the steady states zPss,17 and
zPss,18 are not generated by the scenario scSHϕ either.

Figure 4.27: Here, one sees that Pc ≈ 5, which, in turn, determines how one can
perform the next shift toward a scenario wherein the steady state zPss,10 will have been
restored.

and that

b2 ≈ 3.07, (4.238)

thus for all 0.06 < b < 3.07 one has that f(b) < 0, that is,(4.223) holds. Moreover,
whichever of the admissible values , that is, 0.06 < b < 3., must be constrained to
the condition (4.212), so b > 0.2734148.

Therefore, as we have verified numerically, if we had chosen for b̌ = 2.5 then we
would have shifted from the scenario scSH

λ̂2
to the scenario scSHϕ , i.e.,
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scSHϕ =[aP=2,aX=0.8,aE=0.8,θX=0.5,θE=0.5,b̌=2.5,c=0.1,d=0.5,k̂=1,n=4], (4.239)

in which the counterparts of the steady states z0
ss,8, z

0
ss,9, z

P
ss,17, and zPss,18 found in

the primitive scenario scSH
λ̂0

would have been wiped out, as seen in Figures 4.26.
However, bearing in mind that our evaluation is predicated on the assumption that
the parameters have the same order of magnitude unless one can argue otherwise,
we choose for ˆ̂

b = 1, which, in turn, leads us to shift from the scenario scSH
λ̂2

to the
scenario

scSH
λ̂3

=[aP=2,aX=0.8,aE=0.8,θX=0.5,θE=0.5,
ˆ̂
b=1,c=0.1,d=0.5,k=1,n=4], (4.240)

in which the counterparts of the steady states z0
ss,8, z

0
ss,9, z

P
ss,17, and zPss,18 found in the

primitive scenario scSH
λ̂0

are about to be destroyed, as seen in Figures 4.9 and 4.10.
In fact, although we would have drawn the same conclusions from our evaluation by
having chosen for b̌ = 2.5, it would have been done by contradicting the aforemen-
tioned assumption with respect to the parameters θX and θE, which, indeed, can be
numerically verified.

But, what can we tell about scenario scSH
λ̂3

? In fact, we must know how we can
change the stability of the counterpart-in the scenario scSH

λ̂3
-of the stable steady state

zPss,12 in the primitive scenario scSH
λ̂0

. In fact, recalling the analysis of Huang’s model
in Chapter 3, and capitalizing upon the illustration in Figure 4.25, if we draw on
(4.207) then we have that

xinf,n = θX

(
n− 1

n+ 1

) 1
n

< θX , (4.241)

and that
d2

dX2
g1,n(X) < 0 (4.242)

for 0 ≤ X < xinf,n, and that
d2

dX2
g1,n(X) > 0 (4.243)

for X > xinf,n, which, in turn, implies that d
dX
g1,n(X) is strictly increasing for

X > xinf,n, and strictly decreasing for 0 ≤ X < xinf,n. Therefore, if

d

dX
g1,n(xinf,n) ≥ 0 (4.244)

then g1,n(X) is strictly increasing forX ≥ 0, which, in fact, amounts to the condition

θX ≥
aX
k

n2 − 1

4n

(
n+ 1

n− 1

) 1
n

, (4.245)

and by the same token, if

θE ≥
aE
k

n2 − 1

4n

(
n+ 1

n− 1

) 1
n

, (4.246)
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then g2,n(E) is strictly increasing for E ≥ 0. Therefore, by construction, one has
that (4.245) implies that Ψ1,n(X) is strictly decreasing for X ≥ 0, while (4.246)
implies Ψ2,n(E) is strictly decreasing for E ≥ 0.

Thereby, with respect to the scenario scSH
λ̂3

, one has that the conditions (4.245)
and (4.246) read

θX ≥ 0.8521645 (4.247)

and
θE ≥ 0.8521645. (4.248)

So, if we choose for θ̂X = θ̂E = 1 then we can shift from the scenario scSH
λ̂3

to the
scenario

scSH
λ̂4

=[aP=2,aX=0.8,aE=0.8,θ̂X=1,θ̂E=1,
ˆ̂
b=1,c=0.1,d=0.5,k̂=1,n=4], (4.249)

with the counterpart of the steady state zPss,12 being unstable1 in scSH
λ̂4

, as seen in
Figures 4.10 and 4.11.

Further, by inspecting (4.206), one might agree that if θX � 1 then

d

dX
gP1,n(X) ≈ kP , (4.250)

that is, the graph of gP1,n(X) is approximately a straight line, and so is the graph of
ΨP

1,n(X). Moreover, if we draw upon (4.38)1 and if we regard xPb,n(θX) as a function
of θX , one has that xPb,n(θX) decreases as θX increases. Hence, there must exist

θ
(c)
X so that for ˆ̂

θX ∈ [θ
(c)
X ,∞) one has that we will end up in scenarios wherein

the counterparts of the steady states z0
ss,3, z0

ss,4, zPss,12, and zPss,13 will have been

extirpated. In fact, by choosing ˆ̂
θX = 2, one can shift from the scenario scSH

λ̂4
to the

scenario

scSH
λ̂5

=[aP=2,aX=0.8,aE=0.8,
ˆ̂
θX=2,θ̂E=1,

ˆ̂
b=1,c=0.1,d=0.5,k̂=1,n=4], (4.251)

wherein the counterparts of the steady states z0
ss,3, z0

ss,4, zPss,12, and zPss,13 have been
destroyed, as seen in Figures 4.11 and 4.12.

Now, if one consults the expression (4.205) then one might agree that

d2

dX2
ΨP

1,n(X) = O

(
nk
−(2+ 1

n)
P

)
, (4.252)

which, in turn, implies that the curvature of ΨP
1,n decreases as P > 0 or k > 0

increases. By the same token, one has that the curvature of ΨP
2,n decreases as P > 0

or k > 0 increases.
Now, bearing in mind that we wish we could recover the counterpart of the steady

state z0
ss,10, suitable to explain observation (4.1)1, if we draw upon the estimate

(4.294) then there must exist Pc > 0 for which one has that

d

dX
gP1,n(X) ≈ kP , (4.253)

1This is numerically verified.
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and that
d

dE
gP2,n(E) ≈ kP , (4.254)

for all P � Pc, which implies that both gP1,n(X) and gP2,n(E) are approximately
a straight line, and so are ΨP

1,n(X) and ΨP
2,n(E) respectively. Thus, intuitively, if

Pc > 0 is sufficiently large then ΨPc
1,n(X) and ΨPc

2,n(E) are strictly decreasing so they
intersect each other in a single point with the X and E-coordinate of the respective
point being significantly small, which, indeed, is in line with the description of the
pluripotent state.

But, how can we proceed to recover zPss,10 ? In fact, one can numerically determine
Pc > 0, and then choose

aP ≥ k(Pc + 1), (4.255)

which, in this case, amounts to choosing

aP ≥ 6, (4.256)

given that Pc ≈ 5, as seen in Figure 4.27.
Hence, if we choose âP = 6 then we can shift from the scenario scSH

λ̂5
to the

scenario

scSH
λ̂6

=[âP=6,aX=0.8,aE=0.8,
ˆ̂
θX=2,θE=1,

ˆ̂
b=1,c=0.1,d=0.5,k̂=1,n=4], (4.257)

and seemingly, we have strategically restored zss,10, as seen in Figure 4.13.
However, if one draws upon (4.208) and (4.209) then one can conclude that

unravelling scenarios similar to all the observations in (4.1) entails to change the
curvature of Ψ3. In fact, by invoking Assertion 01 in Section 1.5 with respect
to scSH

λ̂6
, even though one might argue that the respective scenario is suitable to

explain the observation (4.1)1, by invoking Assertion 02 in Section 1.5, one would
have to set aP = 0 so as to end up in a scenario that could be used to explain the
observation (4.1)2, which, in turn, would impede us from finding a scenario in such
a decomposition that might be used to explain the observation (4.1)4, that is, the
one concerning the Jammed state JE.

But, how can we stipulate conditions to avoid it ? In fact, with respect to scSH
λ̂6

,
it amounts to the sufficient conditions

1

ēzE

(
ˆ̂aP

k̂
− 1

)
< ĉ, (4.258)

and

1

ĉx
(0)
b,n

(
ˆ̂aP

k̂
− 1

)
< d̂, (4.259)

with ēzE being the E-coordinate of the counterpart of the steady state zss,2 in the
scenario scSH

λ̂6
, so ēzE ≈ 1.8. By inspection of Figure 4.27, one sees that x(0)

b,n ≈ 1.
But, how to stipulate ˆ̂aP ? In fact, by invoking Assertion 02, if we scrutinize the
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scenario scSH
λ̂6

in the Figure 4.27 then, as we will see further, it is evident that
choosing ˆ̂aP = 2 is sufficient to give rise to a scenario that can be used to explain
the observation (4.1)2. Thereby, one has that

ĉ > 0.56, (4.260)

and
d̂ > 1.8. (4.261)

Nonetheless, predicated upon the assumption that all the parameters are of the
same order of magnitude unless one can argue otherwise, if we choose ĉ = 1 and
d̂ = 2 then we can shift from the scenario scSH

λ̂6
to

scSH
λ̂7

=[âP=6,aX=0.8,aE=0.8,
ˆ̂
θX=2,θ̂E=1,

ˆ̂
b=1,ĉ=1,d̂=2,k̂=1,n=4], (4.262)

which, by invoking the Assertion 1.5.1 in Section 1.5, is indeed similar to observation
(4.1)1, or better,

scSH
λ̂7
∼ O

(CHIR+,PD+,LIF+,RA−)
P , (4.263)

as seen in Figures 4.14 and 4.19. In fact, âP = 6 > aX = 0.8 = aE embodies
the self-renewal property of mESCs when being cultured with Chiron99021 [CHIR],
PD0325901 [PD], and Leukemia inhibitory factor [LIF]. Indeed, under the latter
conditions, one has that all the mESCs are maintained in the pluripotent state,
which, in turn, is described by the scenario scSH

λ̂7
given that all the orbits in a

vicinity of zP goes towards zP , i.e. the Pluri-equilibrium.
Further, if we choose ˆ̂aP = 2 then we can shift from the scenario scSH

λ̂7
to the

scenario

scSH
λ̂8

=[ˆ̂aP=2,aX=0.8,aE=0.8,
ˆ̂
θX=2,θ̂E=1,

ˆ̂
b=1,ĉ=1,d̂=2,k̂=1,n=4], (4.264)

which, by invoking the Assertion 1.5.2 in Section 1.5, is indeed similar to observation
(4.1)2, or better,

scSH
λ̂8
∼ O

(CHIR−,PD−,LIF−,RA−)
E , (4.265)

as seen in Figures 4.15 and 4.20. In fact, choosing ˆ̂aP = 2 < âP = 6 causes zP
to be wiped out, which describes the removal of Chiron99021 [CHIR], PD0325901
[PD], and Leukemia inhibitory factor [LIF], leading mESCs to differentiate into
Ecto-like cells, which, in turn, is captured by the scenario scSH

λ̂8
, seeing that all the

orbits initiating within a neighbourhood of the point zbifP being2 characterized by
the coordinates of zP , goes towards zE, that is, the Ecto-equilibrium.

Now, by appealing to Assertion 1.5.3 in Section 1.5, if we choose
ˆ̂
θ̂X = 1 then

we can shift from the scenario scSH
λ̂8

to the scenario

scSH
λ̂9

=[ˆ̂aP=2,aX=0.8,aE=0.8,
ˆ̂
θ̂X=1,θ̂E=1,

ˆ̂
b=1,ĉ=1,d̂=2,k̂=1,n=4], (4.266)

which is indeed similar to observation (4.1)3, or better,
2The superscript "bif" represents this point after bifurcation of the respective steady state.
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scSH
λ̂9
∼ O

(CHIR−,PD−,LIF−,RA+)
X,E , (4.267)

as seen in Figures 4.16 and 4.21. In fact, decreasing the parameter θX captures
the addition of retinoic acid [RA] which, in turn, culminates in symmetry breaking,
that is, just as much orbits within a neighbourhood of zbifP go either towards the
Ecto-equilibrium, zE, or towards the Xen-equilibrium, zX .

However, if we build upon the intentions of the model, and indeed upon Assertion
1.5.4 in Section 1.5, then unravelling a scenario similar to observation (4.1)4 do entail
to lower the parameter d, which, by construction, embodies the suppression of the
Xen-like population when only adding PD0325901 [PD] together with retinoic acid
[RA]. However, lowering d biases the appearance of the Xen-jammed equilibrium
zJX , which, in turn, implies that such a scenario cannot be similar to the observation
(4.1)4 whatsoever. In fact, this is illustrated by choosing d = 0 what leads us to
shift from the scenario scSH

λ̂9
to the scenario

scSH
λ̂10

=[ˆ̂aP=2,aX=0.8,aE=0.8,
ˆ̂
θ̂X=1,θ̂E=1,

ˆ̂
b=1,ĉ=1,d̂=0,k̂=1,n=4], (4.268)

which is not similar to observation (4.1)4, or better,

scSH
λ̂10
6∼ O

(CHIR−,PD+,LIF−,RA+)
JE ,E

, (4.269)

as seen in Figures 4.17 and 4.22. In fact, one has that just as much orbits within
a vicinity of zbifP either go towards the Ecto-equilibrium zE or towards the Xen-
Jammed equilibrium zJX .

Consequently, by drawing on Assertion 1.5.5, if we keep on invoking the inten-

tionality of the Semrau-Huang’s model, then we can choose ˆ̂
d = 2 and

ˆ̂
ˆ̂
θX = 0.5 to

shift from the scenario scSH
λ̂10

to the scenario

scSH
λ̂11

=[ˆ̂aP=2,aX=0.8,aE=0.8,
ˆ̂
ˆ̂
θX=0.5,θ̂E=1,

ˆ̂
b=1,ĉ=1,

ˆ̂
d=2,k̂=1,n=4], (4.270)

which is not similar to observation (4.1)5, or better,

scSH
λ̂11
6∼ O

(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E , (4.271)

as seen in Figures 4.18 and 4.23. In contrast to the respective experiment, in
which the Jammed cells were differentiated further with retinoic acid [RA] in the
absence of PD0325901 showing an enormous bias towards Ecto-like cells, one has
that in the scenario scSH

λ̂11
, the majority of the orbits within the vicinity of the point

zbifJX being characterized by the coordinates of zJX in the scenario scSH
λ̂10

, go toward
the Xen-equilibrium zX , which, in turn, is detrimental to Semrau-Huang’s extension
with respect to the observations in (4.1).

Hence, we have just seen that the intentions of the model seem not to fully
manifest themselves in the model itself, which, in turn, leads us to conjecture that
Semrau-Huang’s model is inadequate to explain the observations 4.1. However, can
we find an argument for that ? Or rather, can we somehow argue that Semrau-
Huang’s model contains a contradiction with respect to the observations 4.1 ? In
fact, we will be exclusively addressing the latter questions in the next section.
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4.6 An argument for the inadequacy of the model

If we rely upon the mathematical structure of the model then we can assert that a
choice of parameters d� 1 and c� 1 biases the model to have scenarios in which
the Ecto-equilibrium zE coexists with the Ecto-jammed equilibrium zJE . However,
d� 1 and c� 1 seems to contradict the description of the observation

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

. (4.272)

In fact, given that d models the suppression of the Xen-like cells observed in (4.272)
whereby the addition of PD0325901-a MEKi inhibitor-was performed, vitiating
MAPK/Erk signaling pathway as thoroughly described in Section 1.5, one has that
such a scenario, containing the property d� 1 and c� 1, seems utterly inadequate
to explain the observation (4.272).

However, we are not entitled to make the assertion that all the admissible sce-
narios in SCSH to explain the observation (4.272), that is, the ones wherein the
Ecto-equilibrium zE coexists with the Ecto-jammed equilibrium zJE do have the
property

d� 1 ∧ c� 1. (4.273)

If we could demonstrate that then, predicated upon the assumption that all the
parameters should have the same order of magnitude unless there was a reason to
be otherwise, it would irrefutably imply that the model is inadequate.

Therefore, we are in need of a better argument to evaluate the adequacy of
Semrau-Huang’s model with respect to the observations

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

,

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E ,

(4.274)

respectively.
In fact, Let z = (X∗, E∗, P ∗) be a steady state of Semrau-Huang’s model. if

we recall the polynomial characteristic of the Jacobian matrix of Semrau-Huang’s
model, namely

pSH(λ) = λ3 + aSH1 λ2 + aSH2 λ+ aSH3 (4.275)

with
aSH1 (z∗) = −

(
DF̃33(z∗) + TrDFH

kP
(z∗)

)
, (4.276)

and

aSH2 (z∗) = DetDFH
kP

(z∗) +DF̃33(z∗) TrDFH
kP

(z∗)

+DF̃32(z∗)DF̃23(z∗) +DF̃13(z∗)DF̃31(z∗),
(4.277)

and

aSH3 = −DF̃33(z∗) DetDFH
kP

(z∗) +DF̃11(z∗)DF̃32(z∗)DF̃23(z∗)

−DF̃21(z∗)DF̃32(z∗)DF̃13(z∗)−DF̃12(z∗)DF̃31(z∗)DF̃23(z∗)

+DF̃22(z∗)DF̃31(z∗)DF̃13(z∗),

(4.278)
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Figure 4.28: scSHν0
Figure 4.29: scSHν1

Figure 4.30: scSHν2

Figure 4.31: scSHν2

Figure 4.32: scSHν3

Figure 4.33: scSHν3
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then, by drawing on (4.102), one has that the terms of the polynomial (4.275), that
is, aSH1 , aSH2 , and aSH3 are explicitly dependent upon θX through DF̃11. In fact, if
we recall that

DF̃11(X,E, P ) = − d

dX
gP1,n(X) = −

[
kP − naXθnX

Xn−1

(θnX +Xn)2

]
, (4.279)

then we can conveniently rewrite DF̃11 as

DF̃11(X,E, P ) = −
{
kP − aX

[
nXn−1

(θnX +Xn)
− n X2n−1

(θnX +Xn)2

]}
. (4.280)

On the other hand, one has that

F̃1(X,E, P ) = 0,

F̃2(X,E, P ) = 0,

F̃1(X,E, P ) = 0,

(4.281)

in particular, implies that

aX
Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ) = 0, (4.282)

which implies that

nXn−1

(θnX +Xn)
=

n

aXX

[
kX(1 + cP )− b 1

1 + En

]
, (4.283)

and that

n
X2n−1

(θnX +Xn)2
=

n

a2
XX

3

[
kX(1 + cP )− b 1

1 + En

]2

. (4.284)

Now, if we use the equality’s (4.283) and (4.284) in (4.285) then we arrive at

DF̃11(X,E, P ) = −kP +
n

X

[
kX(1 + cP )− b 1

1 + En

]
− n

aXX3

[
kX(1 + cP )− b 1

1 + En

]2

,

(4.285)

which means that DF̃11 is indeed implicitly independent upon θX . Instead, one
can say that the it depends upon the point at which the Jacobian matrix is being
computed.

But, what can we conclude from the latter elucidation with respect to Semrau-
Huang’s model? In fact, it implies that the roots of the characteristic polynomial of
the Jacobian matrix of Semrau-Huang’s model (4.275) are implicitly independent on
θX . Hence, according to the later elucidations, one has that zE and zJE do coexist
for the same range of admissible θX ’s. By the same token, one has that zE and zJE
do not exist for the same range of admissible θX ’s.
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To understand the latter and the former claims, we have numerically simulated
that. Indeed, as seen in Figures 4.28, 4.29, 4.30 and 4.31, one has that zE and
zJE do coexist in the scenarios

scSHν0 =[aP=2,aX=0.8,aE=0.8,θX=104,θE=1,b=1,c=0.2,d=7,k=1,n=4] (4.286)

and
scSHν1 =[aP=2,aX=0.8,aE=0.8,θX=0.4,θE=1,b=1,c=0.2,d=7,k=1,n=4]. (4.287)

Actually, zE and zJE do coexist in the scenarios

scSHνs =[aP=2,aX=0.8,aE=0.8,θX=s,θE=1,b=1,c=0.2,d=7,k=1,n=4] (4.288)

with s ∈ [0.4,∞). On the other hand, zE and zJE do not coexist in the scenario

scSHν2 =[aP=2,aX=0.8,aE=0.8,θX=0.33,θE=1,b=1,c=0.2,d=7,k=1,n=4], (4.289)

wherein zJE has been destroyed, and do not exist in the scenario

scSHν3 =[aP=2,aX=0.8,aE=0.8,θX=0.28,θE=1,b=1,c=0.2,d=7,k=1,n=4], (4.290)

in which both zE and zJE have been destroyed, as seen in Figures 4.30, 4.31,
4.32 and 4.33 respectively. In fact, one has that zE and zJE do not coexist in the
scenarios

scSHνr =[aP=2,aX=0.8,aE=0.8,θX=r,θE=1,b=1,c=0.2,d=7,k=1,n=4] (4.291)

with r ∈ [0.28, 0.33], and do not exist in the scenarios

scSHνq =[aP=2,aX=0.8,aE=0.8,θX=q,θE=1,b=1,c=0.2,d=7,k=1,n=4] (4.292)

with q ∈ [0, 0.28).
Therefore, based on the geometrical aspects of the model, if we acknowledge that

for the main components of
(
SHn[C̆i,X , C̆j,E, C̆r,P ]

)
i,j,r

, one has that zE and zJE do

plausibly coexist in a closed region of R3, then, according to the latter elucidations,
when varying parameter θX , one has that zE and zJE do not coexist in the respective
closed region of R3 for a tiny interval of admissible θX ’s.

Hence, the latter elucidation of Semrau-Huang’s model strongly motivates us to
rule out the model as a conceptual mechanism to explain the observation

O
(CHIR−,PD+,LIF−,RA+)
JE ,E

PD0325901−, RA+

−−−−−−−−−−−→ O
(CHIR−,PD−,LIF−,RA+)
E , (4.293)

given that it leads us to conjecture that the model has indeed a contradiction.
In fact, even though one could find d and c compatible with the intentionality of
Semrau-Huang’s model towards the observation (4.274)1, that is, even though one
could find d and c for which zE and zJE do coexist in a respective scenario similar to
the observation (4.274)1, one has that zE and zJE do bifurcate in the same parameter
range what is harmful for the model itself. However, if we want to be entitled to
rule out the model as a conceptual mechanism to explain (4.274)2 then we need to
give a formal proof for the latter conjecture.
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(a) scSHµ1
(b) scSHµ1

(c) scSHµ2
(d) scSHµ3

(e) scSHµ4
(f) scSHµ4

Figure 4.34: The X,E, P -nullclines for µ1 = (aP = 2, aX = 0.8, aE = 0.8, θX =
1, θE = 1, b = 1, c = 1, d = 0, k = 1, n = 4), µ2 = (. . . , n = 6), µ3 = (. . . , n = 8), and
µ4 = (. . . , n = 10).
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4.7 The numerical computation of two Andronov−
Hopf bifurcations in SHn[C̃3,X , C̃3,E, C̃−1,P ]

Based on the paradigm that oscillations can be seen as a interplay between a fast
positive feedback and a slow negative feedback, one can wonder whether or not
Semrau-Huang’s model contains stable limit cycles. To argue that it is indeed the
case, we will be giving a geometric argument for that. First, we have that the
interplay between a fast positive feedback and a slow negative feedback is embodied
in the parameters c and d.

How will we proceed then ? In fact, if we recall that

d2

dX2
ΨP

1,n(X) = O

(
nk
−(2+ 1

n)
P

)
, (4.294)

then we have that d2

dX2 ΨP
1,n(X) increases as n > 1 increases, and decreases as kP in-

creases. Therefrom, we conjecture that the curvature of the X-nullcline increases as
n increases within a sufficiently large neighborhood of the Xen-jammed equilibrium
zJX shown in Figures 4.34 (a) and (b) for the scenario

scSHµ1 =[aP=2,aX=0.8,aE=0.8,θX=1,θE=1,b=1,c=1,d=0,k=1,n=4], (4.295)

respectively. Regarding the respective scenario, one has that

θX = 1 >
aX
k

= 0.8, (4.296)

and that
θE = 1 >

aE
k

= 0.8, (4.297)

and that the condition

C̆−1,P : 0 <
1

c

(aP
k
− 1
)
< e

(0)
b,n + dx

(0)
b,n (4.298)

is satisfied for the representative µ1 = (aP = 2, aX = 0.8, aE = 0.8, θX = 1, θE =
1, b = 1, c = 1, d = 0, k = 1, n = 4). So, we have that scSHµ1 is actually the scenario

SH4[C̃3,X , C̃3,E, C̃−1,P ].

But, what about the raised conjecture? In fact, we have numerically verified
that the latter conjecture seems to be true as seen in Figures 4.34 (a)-(f). In fact,
in Figures 4.34 (a) and (f), one clearly sees a significant increase in the curvature
of the X,E-nullclines in the vicinity of the Xen-jammed equilibrium zJX . Likewise,
we could find a similar expression for ΨP

2,n leading to the similar assertion.
But, what does the change in the curvatures of the X,E-nullclines have to do

with the emergence of an Andronov-Hopf bifurcation at the Xen-jammed equilibrium
zJX? In fact, heuristically, a geometric change of the nullclines in the vicinity of a
stable equilibrium can lead the respective equilibrium to become a stable spiral,
which, in turn, owing to the attainment of a critical value by the varying parameter,
can culminate in the emergence of a limit cycle, as numerically verified in Figures
4.35 (a)-(f). However, what is the compromise with the interplay between c = 1 and
d = 0? In fact, drawing upon (4.208), one has that
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(a) Orbits in scSHµ1
= [aP = 2, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 1, d = 0, k = 1, n = 4].

(b) Orbits in scSHµ2
= [aP = 2, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 1, d = 0, k = 1, n = 6].

(c) Orbits in scSHµ4
= [aP = 2, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 1, d = 0, k = 1, n = 8].

Figure 4.35: The Andronov-Hopf bifurcation of the Xen-jammed equilibrium.

∂2

∂X2
Ψ3(X,E) ≡ 0, (4.299)

and that

∂2

∂E2
Ψ3(X,E) ≈ 2aP c

2 1

k
(4.300)

in the vicinity of zJX , which, in turn, geometrically speaking, implies that the curva-
tures of the X,E-nullclines solely account for the emergence of the limit cycle seen
in Figures 4.35 (a)-(c).

A similar reasoning can be used to explain the emergence of the Ecto-limit cycle
related to the Ecto-jammed equilibrium zJE , seen in Figures (4.36) (a)-(c). Regard-
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(a) Orbits in scSHσ1
= [aP = 1000, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 0.001, d = 25000, k = 1, n = 10].

(b) Orbits in scSHσ2
= [aP = 1000, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 0.001, d = 25000, k = 1, n = 20].

(c) Orbits in scSHσ3
= [aP = 1000, aX = 0.8, aE = 0.8, θX =

1, θE = 1, b = 1, c = 0.001, d = 25000, k = 1, n = 30].

Figure 4.36: The Andronov-Hopf bifurcation of the Ecto-jammed equilibrium.

ing the simulations of the latter, one has that c = 0.001 and d = 2.5 ∗ 10000, which
implies that

∂2

∂X2
Ψ3(X,E) ≈ 2aP c

2d2 1

k
(4.301)

and that

∂2

∂E2
Ψ3(X,E) ≈ O(10−6), (4.302)

in the vicinity of zJE .
But, can we give a better argument for the interplay between the parameters

c, d and n? Or better, can we derive necessary conditions for the emergence of
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a Andronov-Hopf bifurcation at the Xen-Jammed equilibrium or/and at the Ecto-
Jammed equilibrium? In fact, by recalling the expression of the polynomial charac-
teristic of the Jacobian matrix of Semrau-Huang’s model in (4.275), if we define

λ := t− aSH1

3

and if we invoke Cordano’s method [4] to solve a cubic equation then we can eliminate
the square term of the equation

λ3 + aSH1 λ2 + aSH2 λ+ aSH3 = 0, (4.303)

which, in turn, becomes

t3 + ϑt+$ = 0 (4.304)

with

ϑ = aSH2 −
(
aSH1

)2

3
(4.305)

and

$ = aSH3 −

[
2
(
aSH1

)2 − 9aSH1 aSH2

]
27

. (4.306)

As for the onset of the Andronov-Hopf bifurcation, one wants to find conditions
for which the characteristic polynomial has complex roots. Indeed, if it is true that

27$2 + 4ϑ3 < 0 (4.307)

then the characteristic polynomial (4.303) has two non-real complex conjugate roots
and one real root, as shown in [4]. This follows from Cordano’s method as we shall
now explain. Hence, if t0 represents the real root and if t1 and t2 symbolizes the two
complex conjugate roots of (4.304) then one has that the expressions

λ0 = t0 −
aSH1

3
,

λ1 = t1 −
aSH1

3
,

λ2 = t2 −
aSH1

3
,

(4.308)

provide the corresponding roots of the characteristic polynomial (4.303). But, how
to determine t0, t1, and t2 ? In fact, if σ1 and σ2 represent, under (4.307), the two
complex conjugate roots of the quadratic equation

σ2 +$σ − ϑ3

27
= 0 (4.309)

then one has that

t1 = σ1 −
ϑ

3σ1

= 0, (4.310)
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and that

t2 = σ2 −
ϑ

3σ2

= 0, (4.311)

with

σ1 =
−$ − i

√
3

9

√
− (27$2 + 4ϑ3)

2
(4.312)

and

σ2 =
−$ + i

√
3

9

√
− (27$2 + 4ϑ3)

2
, (4.313)

or better,

σ1 = −$
2
− iΣ0 (4.314)

and
σ2 = −$

2
+ iΣ0, (4.315)

wherein

Σ0 =

√
3

18

√
− (27$2 + 4ϑ3) > 0, (4.316)

and we arrive at

λ1 = −

[
aSH1

3
+
$

2
− $

6

ϑ(
$2

4
+ Σ2

0

)]− i[1 +
ϑ

3
(
$2

4
+ Σ2

0

)]Σ0,

λ2 = −

[
aSH1

3
+
$

2
− $

6

ϑ(
$2

4
+ Σ2

0

)]+ i

[
1 +

ϑ

3
(
$2

4
+ Σ2

0

)]Σ0,

(4.317)

which are the expressions for the two complex conjugate roots of (4.303) respectively.
Now, if we consistently assume that

EJX ≈ 0,

and that
PJX ≈

(aP
k
− 1
)

then, by invoking (4.134) and (4.153), we have that

aSH1 (zJX ) = −
(
DF̃33(zJX ) + TrDFH

kP
(zJX )

)
≈ −

[
k2

aP
− k(1 + cdXJX )− 2kP +

n

2n+2

]
≈ −

{
k2

aP
− k(1 + cdXJX )− 2k

[
1 + c

(aP
k
− 1
)]

+
n

2n+2

}
,

(4.318)
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and that

aSH2 (zJX ) = DetDFH
kP

(zJX ) +DF̃33(zJX ) TrDFH
kP

(zJX )

+DF̃32(zJX )DF̃23(zJX ) +DF̃13(zJX )DF̃31(zJX ),

≈ DF̃11(zJX )DF̃22(zJX ) +DF̃33(zJX ) TrDFH
kP

(zJX )

+DF̃13(zJX )DF̃31(zJX )

≈ kP

(
kP −

n

2n+2

)
+

[
k2

aP
− k(1 + cdXJX )

](
−2kP +

n

2n+2

)
+k2c2d

(aP
k
− 1
)
XJX

≈ k
[
1 + c

(aP
k
− 1
)]{

k
[
1 + c

(aP
k
− 1
)]
− n

2n+2

}
+

[
k2

aP
− k(1 + cdXJX )

]{
−2k

[
1 + c

(aP
k
− 1
)]

+
n

2n+2

}
+k2c2d

(aP
k
− 1
)
XJX ,

(4.319)

and that

aSH3 (zJX ) = −DF̃33(zJX ) DetDFH
kP

(zJX ) +DF̃11(zJX )DF̃32(zJX )DF̃23(zJX )

−DF̃21(zJX )DF̃32(zJX )DF̃13(zJX )−DF̃12(zJX )DF̃31(zJX )DF̃23(zJX )

+DF̃22(zJX )DF̃31(zJX )DF̃13(zJX )

≈ −
[
k2

aP
− k(1 + cdXJX )

]
kP

(
kP −

n

2n+2

)
+ b

nXn
JX[

1 +Xn
JX

]2k2c2
(aP
k
− 1
)

−kPk2c2d
(aP
k
− 1
)
XJX

≈ −k
[
1 + c

(aP
k
− 1
)]{

k
[
1 + c

(aP
k
− 1
)]
− n

2n+2

}[ k2

aP
− k(1 + cdXJX )

]
+b

nXn
JX[

1 +Xn
JX

]2k2c2
(aP
k
− 1
)
− k

[
1 + c

(aP
k
− 1
)]
k2c2d

(aP
k
− 1
)
XJX

(4.320)

can be taken as suitable approximations so as to deduce meaningful necessary con-
ditions. For convenience purposes, we have highlighted the terms containing cd in
orange and the terms containing n in purple in the expression of the approximations
(4.318), (4.319), and (4.320).

But, what do we mean with meaningful necessary conditions? In fact, in view
of (4.307), one has that a necessary condition for the existence of complex roots is
that

ϑ < 0, (4.321)

or rather,

aSH2 <

(
aSH1

)2

3
. (4.322)

More specifically, (4.322) is a necessary condition for the roots of the characteristic
polynomial pSH(zJX ) to be comprised by one real root and two complex conjugate
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roots. So, by having a look at the approximations (4.318) and (4.319) respectively,
we claim that(4.322) can lead us to a condition on the interplay between c and d that
might tell us how the stable equilibrium zJX becomes an stable spiral. Moreover,
given that

n

2n+2
< 1

and that
lim

n→+∞

n

2n+2
= 0,

one expects that the terms containing n in the approximations (4.318) and (4.319)
will not play an essential role in the condition (4.322), i.e. in the onset of a stable
spiral at zJX .

However, where will the parameter n play an essential role then ? In fact, under
(4.307), by invoking (4.317), a necessary condition for the emergence of a Andronov-
Hopf bifurcation at zJX is that

aSH1 (zJX )

3
+
$(zJX )

2
− $(zJX )

6

ϑ(zJX )(
$2(zJX )

4
+ Σ2

0(zJX )
) = 0 (4.323)

with

ϑ(zJX ) = aSH2 (zJX )−
(
aSH1 (zJX )

)2

3
< 0, (4.324)

and

$(zJX ) = aSH3 (zJX )−

[
2
(
aSH1 (zJX )

)2 − 9aSH1 (zJX )aSH2 (zJX )
]

27
, (4.325)

and

Σ0(zJX ) =

√
3

18

√
− (27$2(zJX ) + 4ϑ3(zJX )) > 0, (4.326)

and we might solve (4.323) for n.
Consistently, we turn our attention towards the term

nXn
JX[

1 +Xn
JX

]2 = O(n),

which is contained in the expression of aSH3 (zJX ). By invoking the Routh-Hurwith
conditions (4.4.2), zJX is a stable equilibrium, or a stable spiral, if and only if

aSH1 (zJX ) > 0,

aSH3 (zJX ) > 0,

aSH1 (zJX )aSH2 (zJX )− aSH3 (zJX ) > 0,

(4.327)

holds. If EJX ≈ 0 and d� 1 is sufficiently small to hold aSH1 > 0 and aSH3 > 0 true,
then a bifurcation occurs when

aSH1 (zJX )aSH2 (zJX )− aSH3 (zJX ) ≤ 0.

Therefore, by sufficiently increasing the parameter n, one has that a stable spiral
at zJX undergoes a Hopf-Andronov bifurcation through which a stable limit cycle
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(a) Orbits in scSHµ4
= [aP = 2, aX = 0.8, aE = 0.8, θX = 1, θE = 1, b = 1, c =

1, d = 0, k = 1, n = 8].

(b) Orbits in scSHσ2
= [aP = 1000, aX = 0.8, aE = 0.8, θX = 1, θE = 1, b =

1, c = 0.001, d = 25000, k = 1, n = 30].

Figure 4.37: The two Andronov-Hopf bifurcation of the Xen-jammed and Ecto-
jammed equilibria.

emerges. This is in line with our intuitive geometric argument and with the numer-
ical experiments shown in Figure 4.37. Lastly, yet consistent with our geometric
argument, we assert that there can occur no oscillations in the scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, ˘C2,n],

seeing that, as n increases, the curvature of the nullclines in the vicinity of the
jammed equilibria [zPss,11, zPss,13] tend to zero.

4.8 Discussion
As we have seen through this chapter, we can apply the systematic procedure es-
tablished in Chapter 2 so as to evaluate Semrau-Huang’s model. Upon doing so, we
found the primitive scenarios of the model which unravelled the maximal number of
steady states that the model can generate.

Moreover, we have drawn upon Chapter 3 to access the (in)stability of the steady
states of Semrau-Huang’s model at the level P = 0, that is, the ones given by Huang’s
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model. In order to have a clue as to the (in)stability of the steady states of Semrau-
Huang’s model at a level P > 0, we have invoked the Routh-Hurwith conditions with
which, by means of suitable approximations of the coefficients of the characteristic
polynomial of the Jacobian matrix of the model, we have understood the stability
of key steady states produced by Semrau-Huang’s model [zPss,10, zPss,11, zPss,12, zPss,13]
verified by the numerical experiments.

Concerning the evaluation itself, we have provided a suitable decomposition of
a primitive scenario unravelling scenarios similar to the observations of the experi-
ments. Nonetheless, this decomposition strongly suggests that the model does have
a contradiction with respect to the properties of the observations (4.1) described in
Section 1.5.

In fact, we have argued that the Ecto equilibrium zE [z0
ss,2] and the Ecto-jammed

equilibrium zJE [zPss,11] do bifurcate in the same parameter range with respect to
θX . Furthermore, we have argued that the coexistence of the Ecto equilibrium zE
[z0
ss,2] and the Ecto-jammed equilibrium zJE [zPss,11] can only occur under a condition

contradicting one property of the observation (4.1)4. In fact, the Ecto-jammed
equilibrium, described in Section 1.5 and represented in (4.1)4, emerges upon the
abrogation of the Mek-Erk pathway, which, in turn, suppresses the population of
Xen-like cells. This is captured by the parameter d in the model, which, in this
case, should be sufficiently small d� 1.

However, with respect to the counterpart equilibrium generated by the model,
that is, the Ecto-jammed equilibrium zJE [zPss,11] , one has that finding a scenario
wherein zJE [zPss,11] and zE [z0

ss,2] coexist, is favoured by d� 1. So, if we assume that
the described role of the parameter d is in line with the intentions of the modelling
agent, then the latter property of the model is inconsistent with the observations
(4.1)4,5. Therefore, if we give a formal proof for the aforesaid claims about the
properties of the model, then we will have proved that Semrau-Huang’s model has
a property that contradicts the observations (4.1)4,5.

Further, we have found oscillations in Semrau-Huang’s model. In fact, we have
numerically shown that the Ecto and the Xen-jammed equilibria undergo Andronov-
Hopf bifurcation when the parameter n increases under a suitable interplay of the
parameters c and d. Those numerical experiments led us to conjecture that the
onset of such a bifurcation at the jammed equilibria is essentially determined by
the curvature of the X and E-nullclines at level P > 0, that is, d2

dX2 ΨP
1,n(X) and

d2

dE2 ΨP
2,n(E).

Thereby, one has that oscillations are not to be found in the scenario

SHn[C̆1,X , C̆1,E, C̆1,P , C̆0,n, C̆1,n, ˘C2,n],

wherein the curvatures d2

dX2 ΨP
1,n(X) and d2

dE2 ΨP
2,n(E), in the vicinity of the Xen- and

Ecto-jammed equilibria [zPss,11, zPss,13], tend to zero as n increases. Lastly, we have
used the Cordano method to solve cubic equations so as to analytically understand
how the interplay between c and d stipulates that zJE [zPss,11] and zJX [zPss,13] become
stable spirals and what is the relation between n and the onset of the Andronov-Hopf
bifurcation at the respective equilibria.

254



Chapter 4. An application of the proposed evaluation to Semrau-Huang’s model255

4.9 Conclusion
Regarding the similarity property, one has that Semrau-Huang’s extension has a
dynamical equation for the P variable representing the pluripotency network, that
is,

dP

dt
= aP

P

θ + P
− kP [1 + c(E + dX)]

which is not entirely in line with the current paradigm concerning the modelling of
transcriptional regulation in gene expression. In fact, the general consensus is that
transcription factors regulates gene expression in a switch-like fashion, as stated
in [80, p. 95]. So, with regard to the phenomenon itself, one has that a suitable
mathematical representation thereof is thought to be highly sigmoidal, which, in
turn, is not the case of the regulatory function

aP
P

θ + P

being formulated for the pluripotency network in Semrau-Huang’s model.
Therefore, if transcriptional regulation in gene expression is supposed to be mod-

elled in a switch-like fashion and if a suitable mathematical representation for that
is thought to be highly sigmoidal then a Hill-function seems to be suitable for that.
Indeed, it presumptively contains all the main properties of the phenomenon as
argued in Section 1.5.

Having said that, one might agree that the representation

aP
P n

θn + P n
+ b

θn

θn +Xn
+ b

θn

θn + En

of the regulatory part of the dynamical equation for the pluripotency network suffices
to satisfy the similarity hypothesis, as well as the representations

aX
Xn

θnX +Xn
+ b

θn

θn + En
+ b

θn

θn + P n

and
aE

En

θnE + En
+ b

θn

θn +Xn
+ b

θn

θn + P n

of the regulatory part of the dynamical equations for the endoderm and ectoderm
network respectively.

Regarding the adequacy hypothesis, due to the former elucidations, we have
conjectured that Semrau-Huang’s extension has a contradiction with respect to the
observation (4.1)5, which, if we provide a proof for that, rules out the model as a
conceptual mechanism to explain the experiments in (4.1).

However, it is essential to state that Semrau-Huang’s extension could be the
model to explain other phenomena and, furthermore, that it is a model that allows
for more complex behaviour, as evidenced by the generation of oscillations shown in
Figures 4.37a and 4.37b.
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Appendix A

Numerical integration methods

As we have seen through this thesis, the differential equations describing Semrau-
Huang’s model are too complex to allow an analytical solution thereof. Although
our approach is analytical, we numerically verify the existence of the steady states
so as to illustrate the analytical results. To numerically solve the corresponding
equations, we use the forward Euler method which approximates the derivative at
time t, that is,



dP

dt
≈ P (t+ ∆t)− P (t)

∆t
dX

dt
≈ X(t+ ∆t)−X(t)

∆t
dE

dt
≈ E(t+ ∆t)− E(t)

∆t

(A.1)

(A.2)

(A.3)

(A.4)

in which accuracy is determined by the increment ∆t, so the smaller is ∆t, the more
accurate is the method. In fact, I have implemented the Euler forward method for
Semrau-Huang’s model.

But, what can we tell about the drawbacks of the Euler forward method ? Are
we in need of a better method to be used in this thesis ? In fact, following the
approach of [49, p. 153–156], one has that the Euler forward method amounts to



P (t+ ∆t)− P (t)

∆t
= MPP

X(t+ ∆t)−X(t)

∆t
= MXX

E(t+ ∆t)− E(t)

∆t
= MEE

(A.5)

(A.6)

(A.7)

in which the matrices MP ,MX , and ME are solely determined by the respective
differential equations and by the discretization of the time interval being adopted.

Now, to which concepts of the theory of numerical analysis should we refer so as
to answer the ongoing questions ? In fact, the key concept is numerical stability. If
we want to understand the essence of the latter concept then we can limit ourselves
to the equation
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{
w′ = λw

w(0) = w0

(A.8)
(A.9)

and the perturbed equation {
w̃′ = λw̃

w̃(0) = w0 + ε

(A.10)
(A.11)

with λ ∈ C and with ε > 0 being small. If we apply Euler forward to (A.8) and
(A.10) then we arrive at

wn+1 = (1 + λ∆t)wn = . . . = (1 + λ∆t)nw0,

w̃n+1 = (1 + λ∆t)w̃n = . . . = (1 + λ∆t)n(w0 + ε),
(A.12)

with {t0, t1, . . . , tn, . . . , tN} being a partition of the time interval [0, T ] (T > 0).
Hence, one has that

w̃n+1 − wn+1 = (1 + λ∆t)n+1ε, (A.13)

and dependent upon the increment ∆t, one has that or it is true that

(1 + λ∆t) < 1, (A.14)

or it is true that
(1 + λ∆t) ≥ 1. (A.15)

So, if | 1 + λ∆t |< 1 and δ � 1 then | w̃n+1−wn+1 |� 1. In the later case, one says
that the numerical solution {wn : n = 0, 1, 2, . . . , N} is said to be numerical stable.
In fact, the Euler forward method is stable in the region

SEF = {z ∈ C :| 1 + z |< 1}, (A.16)

that is, in the unitary ball centered at z = −1. Therefore, one has that the Euler
forward method is conditionally stable.

Despite the existence of better methods, that is, with a wider stability region,
such as the Trapezoidal method, whose stability region reads

STM = {z ∈ C : <(z) < 0}, (A.17)

and the Euler backward method with stability region given by

SEF := {z ∈ C :| 1 + z |> 1}, (A.18)

thus being unconditionally stable; it suffices to implement the Euler forward method
provided that we choose a convenient increment ∆t so that

z = µ∆t ∈ SEF , (A.19)

for all µ ∈ σ(Mi) and for all i ∈ {P,X,E}, with

σ(Mi) := {µ : µI−Mi is not invertible }. (A.20)

But, why is the later claim true ? In fact, as we have shown the existence and
stability of the steady states then it suffices to choose for a method that sufficiently
reproduces the qualitative behaviour guaranteed by the analytical approach.
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Appendix B

Some important remarks about the
numerical approach

Now, how can we observe the changes in the nullclines as we perform the judgments?
In fact, if we turn our attention to the X−nullcline

aX
Xn

θnX +Xn
+ b

1

1 + En
− kX(1 + cP ) = 0, (B.1)

then we have that

Ψ̃1,n(X,E) =
1

c

[
1

kX

(
aX

Xn

θnX +Xn
+ b

1

1 + En

)]
. (B.2)

Likewise, with respect to the E−nullcline

aE
En

θnE + En
+ b

1

1 +Xn
− kE(1 + cP ) = 0, (B.3)

one has that

Ψ̃2,n(X,E) =
1

c

[
1

kE

(
aE

En

θnE + En
+ b

1

1 +Xn

)]
. (B.4)

Moreover, provided that the P−nullcline reads

Ψ̃3(X,E) =
aP

k [1 + c (E + dX)]
− 1, (B.5)

I have been able to write a script in R with which we neatly make plots of the
nullclines of Semrau-Huang’s model. But, how could we numerically verify the
stability of the steady states of Semrau-Huang’s model ? In fact, I have extended
an existent script in R to neatly produce the trajectories of Semrau-Huang’s model
in 3D from different perspectives as seen in Appendix C.

To conclude, based upon a natural order of importance emerging from the nu-
merical approach, I would like to let the reader know that I have decided to omit
some details thereof. In case of any doubt, I am pleased to send all the respective
codes and scripts in R.
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Appendix C

Key codes of the numerical
implementation

The Euler forward method for Huang’s model:
‘ ‘ ‘ { r , t idy=TRUE, eva l=TRUE}

Huang_model_Euler_Forward <− f unc t i on (samp , X00 , E00 , X01 , E01 , a_E, a_X
, theta_X , theta_E , K, n , B, delta_t , T_final ) {

#This func t i on numer i ca l ly s o l v e s the network modeling
#with Euler forward .

#Args :

#concent ra t i on and r e a c t i on r a t e s ;

#Returns :

#I t r e tu rn s a matrix whose columns stand f o r the evo lu t i on o f the
concen t ra t i on s .

dt <− delta_t
T_f <− T_final
a_e <− a_E
a_x <− a_X
theta_x <− theta_X
theta_e <− theta_E
k <− K
b <− B
m <− n
x00 <− X00
e00 <− E00
x01 <− X01
e01 <− E01
N <− (T_f/dt )
s <− samp
t t <− seq (0 , T_f − dt , dt )
t t <− as . vec to r ( t t )
X0 <− r un i f ( s , x00 , x01 )#sample i n i t i a l c ond i t i on s
E0 <− r un i f ( s , e00 , e01 )#sample i n i t i a l c ond i t i on s
X <− matrix ( rep (0 , N∗1) , nrow = N, nco l = 1)
E <− matrix ( rep (0 , N∗1) , nrow = N, nco l = 1)
Points <− array (0 , dim=c (N, 3 , s ) )
f o r ( j in 1 : s ) {
X[ 1 , ] <− X0 [ j ]
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E[ 1 , ] <− E0 [ j ]
f o r ( q in 1 : (N−1) ) {
X[ q + 1 , ] <− X[ q , ] + dt ∗(a_x∗ ( (X[ q , ] ) ^{m}/(( theta_x )^{m} + (X[ q , ] )
^{m}) ) + b ∗ ( (1/(1 + (E[ q , ] ) ^{m}) ) ) − k∗X[ q , ] )

E [ q + 1 , ] <− E[ q , ] + dt ∗(a_e∗ ( (E[ q , ] ) ^{m}/(( theta_e )^{m} + (E[ q , ] )
^{m}) ) + b∗ (1/(1 + (X[ q , ] ) ^{m}) ) − k∗E[ q , ] )

Points [ q , 1 , j ] <− t t [ q ]
Points [ q , 2 , j ] <− X[ q , 1 ]
Points [ q , 3 , j ] <− E[ q , 1 ]
Points [N, 1 , j ] <− t t [N]
Points [N, 2 , j ] <− X[N, 1 ]
Points [N, 3 , j ] <− E[N, 1 ]
}
}
Matrix_multidimensional <− Points
Mat_names <− c ( " time" , "X" , "E" )
colnames ( Matrix_multidimensional ) <− Mat_names
Data <− Matrix_multidimensional
XEN<− Data [ , 2 , ]
ECTO<− Data [ , 3 , ]
plot_Data <− matplot (XEN, ECTO, type=" l " , c o l= c (1 , 2 , 5 ) , l t y=c (1 , 1 ) )
Resu l t s <− l i s t ( "Data"= Data , "plot_Data"=plot_Data )
re turn ( Resu l t s )
}

s s <− Huang_model_Euler_Forward ( samp=2500 ,X00=0.0 , E00=0.0 ,X01=2.7 ,E01
=2.7 ,a_E=0.8 , a_X=0.8 , theta_X=0.5 , theta_E=0.5 , K=0.5 , n=4, B
=0.08110187

, delta_t =0.01 , T_final=50)
‘ ‘ ‘

The Euler forward method for Semrau-Huang’s model:

‘ ‘ ‘ { r , t idy=TRUE, eva l=TRUE}

Semrau_Huang_model_Euler_Forward <− f unc t i on (samp , X00 , E00 , P00 , X01 ,
E01 , P01 , a_P, a_E, a_X, theta_X , theta_E , K, C, D, n , B, delta_t ,
T_final ) {

#This func t i on numer i ca l ly s o l v e s SH model
#with Euler forward .

#Args :

#’ concen t ra t i on s ’ and r e a c t i on r a t e s ;

#Returns :

#I t r e tu rn s a matrix whose columns stand f o r the evo lu t i on o f the ’
c oncen t r a t i on s ’ .

dt <− delta_t
T_f <− T_final
a_p <− a_P
a_e <− a_E
a_x <− a_X
theta_x <− theta_X
theta_e <− theta_E
c <− C
d <− D
k <− K
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b <− B
m <− n
p00 <− P00
x00 <− X00
e00 <− E00
x01 <− X01
e01 <− E01
p01 <− P01
N <− (T_f/dt )
s <− samp
t t <− seq (0 , T_f − dt , dt )
t t <− as . vec to r ( t t )
P0 <− r un i f ( s , p00 , p01 )#sample i n i t i a l c ond i t i on s
X0 <− r un i f ( s , x00 , x01 )#sample i n i t i a l c ond i t i on s
E0 <− r un i f ( s , e00 , e01 )#sample i n i t i a l c ond i t i on s
P <− matrix ( rep (0 , N∗1) , nrow = N, nco l = 1)
X <− matrix ( rep (0 , N∗1) , nrow = N, nco l = 1)
E <− matrix ( rep (0 , N∗1) , nrow = N, nco l = 1)
Points <− array (0 , dim=c (N, 4 , s ) )
f o r ( j in 1 : s ) {
X[ 1 , ] <− X0 [ j ]
E[ 1 , ] <− E0 [ j ]
P [ 1 , ] <− P0 [ j ]

f o r ( q in 1 : (N−1) ) {
P[ q + 1 , ] <− P[ q , ] + dt ∗ ( (a_p∗(P[ q , ] / ( 1 + P[ q , ] ) ) ) − k∗P[ q , ]∗ ( 1
+ c ∗(E[ q , ] + (d) ∗(X[ q , ] ) ) ) )

X[ q + 1 , ] <− X[ q , ] + dt ∗(a_x∗ ( (X[ q , ] ) ^{m}/(( theta_x )^{m} + (X[ q , ] )
^{m}) ) + b ∗ ( (1/(1 + (E[ q , ] ) ^{m}) ) ) − k∗X[ q , ]∗ ( 1 + c∗P[ q , ] ) )

E [ q + 1 , ] <− E[ q , ] + dt ∗(a_e∗ ( (E[ q , ] ) ^{m}/(( theta_e )^{m} + (E[ q , ] )
^{m}) ) + b∗ (1/(1 + (X[ q , ] ) ^{m}) ) − k∗E[ q , ]∗ ( 1 + c∗P[ q , ] ) )

Points [ q , 1 , j ] <− t t [ q ]
Points [ q , 2 , j ] <− X[ q , 1 ]
Points [ q , 3 , j ] <− E[ q , 1 ]
Points [ q , 4 , j ] <− P[ q , 1 ]
Points [N, 1 , j ] <− t t [N]
Points [N, 2 , j ] <− X[N, 1 ]
Points [N, 3 , j ] <− E[N, 1 ]
Points [N, 4 , j ] <− P[N, 1 ]
}
}
Matrix_multidimensional <− Points
Mat_names <− c ( " time" , "X" , "E" , "P" )
colnames ( Matrix_multidimensional ) <− Mat_names
Data <− Matrix_multidimensional
#Resu l t s <− l i s t ("Data"= Data , "plot_Data"=plot_Data )
re turn (Data )
}

‘ ‘ ‘

A script to neatly plot the nullclines of Semrau-Huang’s model with interactive
perspective function:

‘ ‘ ‘ { r , t idy=TRUE, eva l=TRUE}
SH_Plot_nullclines_3D <− f unc t i on (XEN, ECTO, PLURI, Xrange , Yrange ,
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Zrange , a_P, a_E, a_X, theta_X , theta_E , K, C, D, m, B) {
#This func t i on p l o t s the n u l l c l i n e s o f SH model .

#Args :

#Parameters and range o f the p l o t

#Returns :

#I t r e tu rn s an i n t e r a t i v e plot3D o f the n u l l c l i n e s
a_p <− a_P
a_e <− a_E
a_x <− a_X
thetax <− theta_X
thetae <− theta_E
c <− C
d <− D
k <− K
b <− B
n <− m
xrange <−Xrange
yrange <−Yrange
zrange <−Zrange
xen <− XEN
ecto <− ECTO
p l u r i <− PLURI
X<− seq (0 , xen , by = 0 .025 )
r <− l ength (X)
E <− seq (0 , ecto , by = 0 .025 )
s <− l ength (E)
P <− seq (0 , p lu r i , by = 0 .025 )
t <− l ength (P)
####################### Semrau−Huang Plur i−Nu l l c l i n e

########################
SP <− matrix ( rep (0 , r ∗ s ) , nrow=r , nco l=s )
f o r ( i in 1 : r ) {

f o r ( j in 1 : s ) {
SP [ i , j ] <− ( (a_p/(k∗(1 + c ∗(E[ j ] + d∗X[ i ] ) ) ) ) − 1)

}
}
####################### Semrau−Huang XEN−Nu l l c l i n e

############################
Psi_P_1_n <− matrix ( rep (0 , r ∗ s ) , nrow=r , nco l=s )
f o r ( i in 1 : r ) {

f o r ( j in 1 : s ) {
Psi_P_1_n [ i , j ] <− (1/ c ) ∗ ( ( ( 1 / ( k∗(X[ i ] ) ) ) ∗ ( (a_x∗ ( (X[ i ] ) ^{n}/( thetax
^{n} + (X[ i ] ) ^{n}) ) ) + (b/(1 + (E[ j ] ) ^{n}) ) ) ) − 1)

}
}
############################# Semrau−Huang ECTO nu l l c l i n e

###############################
Psi_P_2_n <− matrix ( rep (0 , r ∗ s ) , nrow=s , nco l=r )
f o r ( i in 1 : r ) {

f o r ( j in 1 : s ) {
Psi_P_2_n [ i , j ] <− (1/ c ) ∗ ( ( ( 1 / ( k∗(E[ j ] ) ) ) ∗ ( ( a_e ∗ ( (E[ j ] ) ^{n}/( thetae
^{n} + (E[ j ] ) ^{n}) ) ) + (b/(1 + (X[ i ] ) ^{n}) ) ) ) − 1)

}
}
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##############Plot n u l l c l i n e s########################
l i b r a r y ( r g l )
persp3d (x = X, y = E, z= SP , c o l="gray47" , aspect=" i s o " , axes=TRUE,

box=FALSE, xlim = xrange , yl im = yrange , z l im = zrange ,
xlab = "Xen" , ylab = "Ecto" , z lab = "P lu r i " )

persp3d ( x = X, y = E, z = Psi_P_2_n , c o l=" orangered3 " , xl im = xrange
, yl im = yrange , z l im = zrange , add=TRUE)

persp3d ( x = X, y = E, z= Psi_P_1_n , c o l="mediumpurple3" , xl im =
xrange , ylim = yrange , z l im = zrange , add=TRUE)

i n v i s i b l e ( )
}

######### Pr imi t ive Scenar io ##############
l i b r a r y ( r g l )
open3d ( )
sc_8_SH_4 <− SH_Plot_nullclines_3D (XEN=10, ECTO=10, PLURI=15, Xrange=c

(0 , 2 ) , Yrange=c (0 , 2 ) , Zrange=c (0 , 2 ) , a_P=2,a_E=0.8 , a_X=0.8 ,
theta_X=0.5 , theta_E=0.5 , K=0.5 , C=0.1 , D=0.5 , m=4, B=0.0811)

r g l . p o s t s c r i p t ( "sc_SH_4_optimal . pdf " , "pdf " )
#########################################
‘ ‘ ‘

A script in R to neatly produce the trajectories of Semrau-Huang’s model in 3D
from an ’arbitrary’ perspectives:

‘ ‘ ‘ { r , t idy=TRUE, eva l=TRUE}
trajectory_3D <− f unc t i on (x , y , z , ang , type = "p" , l t y = 1 : 5 , lwd =

1 , lend = par ( " lend " ) ,
pch = NULL, c o l = 1 : 6 , cex = NULL, bg = NA, xlab = NULL,
ylab = NULL, z lab = NULL, xlim = NULL, ylim = NULL, z l im= NULL, l og
= "" , . . . , add = FALSE,
verbose = getOption ( " verbose " ) )

{
#This func t i on i s a g e n e r a l i z a t i o n o f the Matplot Function−an

e x i s t e n t s c r i p t in R.
#This g en e r a l i z e d func t i on p e r f e c t l y p l o t s the t r a j e c t o r i e s o f Semrau
−Huang ’ s model in 3D.

#We must emphasize that the most part o f t h i s code was a l r eady done
to y i e l d p l o t s in 2D.

#So the code f o r 2D has been extended to 3D so that i t could produce
the t r a j e c t o r i e s in 3D.

#The idea i s to s ub s t i t u t e the i n t e r p l a y between p lo t and l i n e s by
something s u f f i c i e n t , in fac t , by

#s c a t t e r p l o t 3d and t r j $ p l o t 3d .

#Args :

# R−ob j e c t : an array , or a dataframe , or a matrix ; and g raph i c a l
parameters

#Return :
#I t r e tu rn s the p l o t with the t r a j e c t o r i e s
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alpha_a <− ang
paste . ch <− f unc t i on ( chv ) paste0 ( "\"" , chv , "\"" , c o l l a p s e = " " )
s t r 2ve c <− f unc t i on ( s t r i n g ) {

i f ( nchar ( s t r i ng , type = "c" ) [ 1L ] > 1L)
s t r s p l i t ( s t r i n g [ 1L ] , NULL) [ [ 1 L ] ]

e l s e s t r i n g
}
x l ab e l <− i f ( ! miss ing (x ) )

deparse ( s ub s t i t u t e ( x ) )
y l ab e l <− i f ( ! miss ing (y ) )

deparse ( s ub s t i t u t e ( y ) )
z l a b e l <− i f ( ! miss ing ( z ) )

deparse ( s ub s t i t u t e ( z ) )
i f ( miss ing (x ) ) {

i f ( miss ing (y ) )
i f ( miss ing ( z ) )

stop ( "must s p e c i f y at l e a s t one o f ’ x ’ , ’ y ’ , or ’ z ’ " )
e l s e x <− seq_len (NROW(y) )

} e l s e i f ( miss ing (y ) ) {
y <− x
y l ab e l <− x l ab e l
x <− seq_len (NROW(y) )
x l ab e l <− ""

} e l s e i f ( miss ing ( z ) ) {
z <− x
z l a b e l <− x l ab e l
x <− seq_len (NROW( z ) )
x l ab e l <− ""

}
kx <− nco l ( x <− as . matrix (x ) )
ky <− nco l ( y <− as . matrix (y ) )
kz <− nco l ( z <− as . matrix ( z ) )
n <− nrow (x )
i f (n != nrow (y ) )

stop ( " ’ x ’ , ’ y ’ , and ’ z ’ must have same number o f rows" )
i f (n != nrow ( z ) )

stop ( " ’ x ’ , ’ y ’ , and ’ z ’ must have same number o f rows" )
i f ( kx > 1L && ky > 1L && ky > 1L && (( kx != ky ) | | ( kx != kz ) | | (

ky != kz ) ) )
stop ( " ’ x ’ , ’ y ’ , ’ z ’ must have only 1 or the same number o f

columns" )
i f ( kx == 1L)

x <− matrix (x , nrow = n , nco l = ky )
i f ( ky == 1L)

y <− matrix (y , nrow = n , nco l = kx )
i f ( kz == 1L)

z <− matrix ( z , nrow = n , nco l = ky )
k <− max(kx , ky , kz )
type <− s t r 2ve c ( type )
i f ( i s . nu l l ( pch ) ) {

pch <− c (1L : 9L , 0L , l e t t e r s , LETTERS)
i f ( k > length ( pch ) && any ( type %in% c ( "p" , "o" , "b" ) ) )

warning ( " d e f au l t ’ pch ’ i s sma l l e r than number o f columns
and hence r e cy c l ed " )
}
e l s e i f ( i s . cha rac t e r ( pch ) )

pch <− s t r 2ve c ( pch )
i f ( verbose )
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message ( "matplot : doing " , k , " p l o t s with " , paste0 ( " c o l= ( " ,
paste . ch ( c o l ) , " ) " ) , paste0 ( " pch= ( " , paste . ch ( pch ) ,
" ) " ) , " . . . \ n" , domain = NA)

xyz <− xyz . coords (x , y , z , x labe l , y labe l , z l abe l , l og = log )
xlab <− i f ( i s . nu l l ( xlab ) )

xyz$xlab
e l s e xlab
ylab <− i f ( i s . nu l l ( ylab ) )

xyz$ylab
e l s e ylab
z lab <− i f ( i s . nu l l ( z lab ) )

xyz$z lab
e l s e z lab
xlim <− i f ( i s . nu l l ( xl im ) )

range ( xyz$x [ i s . f i n i t e ( xyz$x ) ] )
e l s e xlim
ylim <− i f ( i s . nu l l ( yl im ) )

range ( xyz$y [ i s . f i n i t e ( xyz$y ) ] )
e l s e ylim
zl im <− i f ( i s . nu l l ( z l im ) )

range ( xyz$z [ i s . f i n i t e ( xyz$z ) ] )
e l s e z l im
i f ( l ength ( type ) < k)

type <− rep_len ( type , k )
i f ( l ength ( l t y ) < k)

l t y <− rep_len ( l ty , k )
i f ( l ength ( lend ) < k)

lend <− rep_len ( lend , k )
i f ( l ength ( lwd ) < k && ! i s . nu l l ( lwd ) )

lwd <− rep_len ( lwd , k )
i f ( l ength ( pch ) < k)

pch <− rep_len ( pch , k )
i f ( l ength ( c o l ) < k)

c o l <− rep_len ( co l , k )
i f ( l ength ( bg ) < k)

bg <− rep_len (bg , k )
i f ( i s . nu l l ( cex ) )

cex <− 1
i f ( l ength ( cex ) < k)

cex <− rep_len ( cex , k )
i i <− seq_len (k )
dev . hold ( )
on . e x i t ( dev . f l u s h ( ) )
i f ( ! add ) {

i i <− i i [−1L ]
l i b r a r y ( s c a t t e r p l o t 3d )
s c a t t e r p l o t 3d (x [ , 1L ] , y [ , 1L ] , z [ , 1L ] , c o l o r = co l [ 1L ] , pch =

pch [ 1L ] , xl im = xlim , ylim = ylim , z l im= zlim , xlab = xlab ,
ylab = ylab , z lab = zlab , s c a l e . y = 1 , ang le = alpha_a ,

g r id = TRUE, box = FALSE, type = type [ 1L ] , h i g h l i g h t . 3 d = FALSE,
mar = c (5 , 3 , 4 , 3) + 0 . 1 , bg = bg [ 1L ] , l og = log , . . . )

t r j <− s c a t t e r p l o t 3d (x [ , 1L ] , y [ , 1L ] , z [ , 1L ] , c o l o r = co l [ 1L
] , pch = pch [ 1L ] , xl im = xlim , ylim = ylim , z l im= zlim , xlab = xlab
,

ylab = ylab , z lab = zlab , s c a l e . y = 1 , ang le = alpha_a ,
g r id = TRUE, box = FALSE, type = type [ 1L ] , h i g h l i g h t . 3 d = FALSE,
mar = c (5 , 3 , 4 , 3) + 0 . 1 , bg = bg [ 1L ] , l og = log , . . . )
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}

f o r ( i in i i ) t r j $po i n t s 3d (x [ , i ] , y [ , i ] , z [ , i ] , type = type [ i
] , c o l = co l [ i ] , lwd=1)

i n v i s i b l e ( )
}

################# Tra j e c t o r i e s o f Semrau−Huang ###########
steady_states <− Semrau_Huang_model_Euler_Forward ( samp=500 ,X00=0.0 , E00

=0.0 , P00=0.0 ,X01=2,E01=2, P01=2, a_P=2,a_E=0.8 , a_X=0.8 , theta_X
=0.5 , theta_E=0.5 , K=1, C=0.1 , D=0.5 , n=30, B=0.811 , delta_t =0.01 ,
T_final=150)

XEN<− s teady_states [ , 2 , ]
ECTO<−s teady_states [ , 3 , ]
PLURI <−s teady_states [ , 4 , ]
trajectory_3D (XEN, ECTO,PLURI, ang= 120 , type=" l " , c o l= c (1 , 3 , 6 , 9 ) , xl im

= c (0 , 2 ) , yl im = c (0 , 2 ) , z l im=c (0 , 2 ) )
##########################################################
‘ ‘ ‘
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[55] Per Martin-Löf. “A path from logic to metaphysics”. In: Atti del Congresso
Nuovi problemi della logica e della filosofia della scienza (1990), pp. 8–13.
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